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AFIT/GCS/ENG/93-99

Abstract

Air Force leaders, recognizing the need for improved training following the Vietnam
War, implemented the Red Flag exercises at Nellis AFB. At the heart of this training is the
Red I'lag Measurement and Debriefing System (RFMDS) and its capability to accurately
reconstruct the elements of an intense exercise fought over the deserts of Nevada. This
thesis uses the technology of distributed interactive simulation (DIS) to transmit aircraft
telemetry onto compuier networks, allowing the monitoring and analysis of live Red Flag
missions at any site with compatible communications equipment and thesis software. The
use of standard DIS protocols enables simulators to “see” Red Flag operations. The three
components of the Remote Debriefing Tool bridge reality with simulation. The computer
communications component serves as a transparent tap into the RFMDS data stream.
The data translation component translates this information into DIS protocol data units
(PDUs). PDUs received by the interface and visualization component are used to generate
two- and three- dimensional images of the Red Flag environment onto a Silicon Graphi s
workstation. An extensive set of analysis tools combined with a graphical user interface
allows reconstruction of airborne activities, producing more effective and comprehensive

training.
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A Distributed Interactive Simulation Based
Remote Debriefing Tool
for

Red Flag Missions

1. Introduction
1.1 Overview

Twenty-five years ago, in early 1968, the United States was heavily involved in the
Vietnam War. Unlike previous wars however, the air-to-air exchange ratio of our pilots
and aircraft had dropped significantly. During the World War II years of 1942-1945, air
operations against enemy aircraft achieved an overall exchange ratio of 14:1. In Korea,
Naval aviators managed a 3.2:1 kill-loss ratio despite having to fight enemy jet aircraft
with piston-driven fighters. But in Vietnam, the overall Navy exchange ratio had dropped
to 2.3:1. Statistics from the other services were no better. Combat kill ratios were the

worst in the history of U.S. aerial warfare (2:36).

Captain Frank W. Ault, USN, was given the mandate to find out why the Navy
was not shooting down more MiGs and to recommend what should be done about it.
He created five expert study teams to examine the Navy’s fighter weapon systems from
“womb to tomb.” This examination of the Navy’s weapon system life cycle and the 242
recommendations that arose from Capt Ault’s study are contained in a report that was

delivered to the Naval leadership in 1969 (2:37).

Among other findings, the report indicated that it was not uncommon to find a
combat situation in which neither the pilot nor the aircraft he was flying had ever launched
a live missile. In addition, the report cited a change in combat philosophy that had shifted
to placing more reliance on the machine than on the man. As a result aircrews were

required to “conduct a heads-up fight with a heads-down system” during man-to-man




aerial combat (2:38). The implications were that training and combat readiness were real

problems.

These findings, among others, suggested the need for improved combat readiness
training and an air combat maneuvering range (ACMR). Thus the findings of the Ault
Report were the genesis for today’s Navy Fighter Weapons School ( Topgun) (2:38).

Research conducted along paralle] lines by the Air Force following the Vietnam war,
yielded some of the same conclusions-aircrews received inadequate training for combat.
Air Force actions to remedy these deficiencies included the creation of the Aggressors in
1972. This organizatiop was an unprecedented opposing “Red Force” for our fighter and
attack aircrews to train against during peacetime. While the Aggressors provided a unique
capability to train against an active opposing force it did not replicate the entire Soviet

air and ground threat (16:33).

Red Flag was conceived in 1975 to provide realistic simulated combat missions for

aircrews to support three mair goals (16:33):

1. train like we plan to fight;
2. train with our allies and sister services;
3. train to develop the readiness to deter war and win any conflict.

To accomplish these goals the ranges north of Nellis AFB were converted into a
simulated Soviet satellite country, complete with anti-aircraft-artillery (AAA) and surface-
to-air missiles (SAMs) protecting both tactical and strategic targets. A sophisticated $58
million aircraft tracking system was installed to track all aircraft during the mock combat.
This system is known as the Red Flag Measurement and Debriefing System (RFMDS)
(16:33). (The ACMR concept recommended in the Ault Report and developed by the
Navy was the precursor not only to the Air Force’s air combat maneuvering instrumentation

(ACMI) range, but also to the RFMDS.)

At Red Flag, aircrews plan and then execute simulated combat missions into a dense
threat environment. They are required to defend themselves and their flight members

from both air and ground threats, acquire and successfully attack their assigned targets,




and recover safely. Each mission exposes the aircrews to stressful, combat-like scenarios
and develops the skills necessary to survive in actual combat. Historically, most losses
occur during a pilot’s first ten combat missions (16:33) thus completion of the Red Flag
experience is designed to be roughly equivalent to the level of experience gained during a

pilot's first few weeks of combat and pilots enter combat at higher levels of readiness.

The debrief which follows the mission is almost as important as the mission itself.
During this evaluation all participants have an opportunity to critically examine every
aspect of their flight performance and to learn how to improve their flying skills and
judgement for future missions. At the heart of the debrief is RFMDS. This tool is used
to graphically reconstruct the mission by displaying aircraft flight paths, rebroadcasting
radio communications, and replaying video tapes from “enemy” ground based threats which

depict the effectiveness of aircrew evasive maneuvers.

Not all aircrews in the Red Flag exercises takeoff from and return to Nellis AFB.
Those aircrews landing at other bases do not have the opportunity to participate in the
mass debriefs and to use the state-of-the-art technology of the RFMDS. As a result, mission
activities that take place outside of the remote aircrew’s field of view go unnoticed. This
places an unnecessary handicap on these aircrews as they try to reconstruct the mission
with limited information. In order to provide instructive debriefs at the remote sites,

aircrews need to “see™ the same things that are presented at the mass debrief.

According to Mr. Mike Mateyka of the 414th Test Squadron at Nellis AFB, the Air
Force recognized the need and, in 1989, established a requirement for a remote debriefing
system that mirrored the capabilities of the RFMDS. A prototype demonstration version
developed by Cubic Corporation, called the Remote Debriefing Display System (RDDS),
satisfying the Air Force requirement was used in two tests in 1990. The first test was
conducted at Nellis AFB and the second at a remote site in Indian Springs, Nevada. Pilot
reaction to the RDDS was favorable and greatly improved aircrew abilities to reconstruct
aerial engagements. It provided a level of situational awareness that was previously un-
available at remote sites. This prototype was the forerunner of the Mini DDS that is
currently under development and scheduled for delivery in 1994. Limited funding will

allow the acquisition of only three units.




In addition to Red Flag’s needs, the 57th Test Group at Nellis AFB has a desire for a
flight test analysis tool that can be used for their test missions in their own facilities. (This
analysis must currently be done at the Red Flag building.) Some of the test missions involve
aircraft and crews from the 99th Bomb Wing at Ellsworth AFB, South Dakota. At present,
personnel from the 99 BW deploy to Nellis and monitor test missions with the RFMDS.
Considerable time and money could be saved if the capability existed to monitor 99 BW
aircraft missions over the Nellis ranges from Ellsworth. Research conducted in the area of
distributed interactive simulation (DIS) provides a means to satisfy the communications

requirements of the needed remote debriefing tool.

The Advanced Research Projects Agency (ARPA) has sponsored simulation research
within the defense community for over a decade (10:1). According to Lt Col Dave Neyland,
ARPA/ASTO, this research has traditionally focused on two major areas: (a) force-level
simulations, or wargames, which test decision makers’ abilities to judiciously commit forces
without large expenditures of men and material (12:44); and (b) distributed interactive
simulation which allows multiple operator or semi-autonomous-force based simulators con-

nected over a wide area network to interact with each other.

The ability of simulators to interact with operational weapon systems forms a newer,
third area of research. ARPA-sponsor-u efforts in this area have already demonstrated a
limited capacity for operational vehicles and simulated entities to interact within the same
virtual environment. During a SIMNET orientation briefing at Fort Knox, Kentucky, the
Navy’s Battle Fleet In-Port Trainer was described. In this exercise, pilots flying helicopter
simulators exhibited the ability to take off from a simulated base, fly to a simulated Naval
port and land on one of the ships. At the same time, the real Navy ship participating in
this exercise was able to acquire, track and display the helicopter simulators on its real
radar equipment. These demonstrations represent only the beginning of the research effort
necessary to bring simulation and operational vehicles together in a common environment.
Simulator interactions with operational aircraft flying on live ranges is another facet of

this new area of research.

Together, these three research areas: wargames, distributed interactive simulation,

and live range interaction, form what has been called the ARPA simulation triangle, and




Wargames

Distributed
Interactive
Simulation

Figure 1. ARPA Areas of Simulation Research

Live-Ranges

represent an overall vision of simulation research for the future. (See Figure 1) Significant
progress in all three areas may one day provide a means for thousands of simulators, ships,

tanks, infantry, and aircraft to participate together in “truly” large scale exercises.

Dr. Earl A. Alluisi, Office of the Director of Defense Research and Engineering,

echoed a similar vision when he stated,

We have a vision. The vision is of an interactive network that can be used
for training individual troops, sailors, marines, and airmen, as parts of the
crews, groups, teams, and units to which they belong. The network is the
key...

Thus, the Army’s tank crew may have a relatively low-cost graphics-based
simulator... The flying squadrons may have more costly and more complex
computer-image-generated displays in their simulators. But with a proper net,
both types can be hung onto the net, and can be used to train combat tactical
skills in simulation of many-on-many situations. With appropriate distribution
of such capabilities, the interactive network can be used in the training not
only of individuals operating vehicle battle stations, but also of individuals in
command-and-control battle stations — the platoon or flight or individual ship,
at one end, and with the expansion to wargaming capabilities, the theater
commander, his staff, and his component commanders and their staffs, at the
other end(1:3).

According to Lt Col Dave Neyland|[-1z, ARPA/ASTO, “This thesis project represents
one of ARPA’s first efforts to explore the issues involved with integrating live aircraft into
Distributed Interactive Simulation by broadcasting aircraft telemetry data over computer
communication networks in a format that can be used by other compatible ground-based

simulators.” These simulators would then have an ability to monitor aircraft activities on




a live range and move around in an environment where both computer-generated and real-
world entities exist. Additionally, this project provides a debriefing tool suitable for remote
location analysis of air-to-air missions flown on the Nellis ranges and an opportunity for

the 57 TG to remotely monitor its own test missions.

12 Thesis Statement

A hardware and software system can be developed which proves the feasibility of
implementing a2 Red Flag mission monitoring and debriefing tool that utilizes the DIS
communication protocol for transmitting aircraft telemetry to remote sites and provides
an interactive interface to a state-of-the-art three-dimensional image generator. (This sys-
tem will subsequently be referred to as the remote debriefing tool (RDT)). The RDT can be
constructed with off-the-shelf network communications hardware and thesis software and
is therefore dependent only upon the availability of a suitable workstation and communi-
cations equipment. The conceptual configuration of the following requirements is depicted
in Figure 2. To establish the feasiblity of such a system, the RDT must demonstrate the
capability to do the following:

1. Monitor RFMDS communications and extract those messages which contain aircraft

telemetry (aircraft position, flight parameters, and weapons control status);

2. Translate the RFMDS telemetry into DIS message formats, known as protocol data
units (PDUs);

3. Transmit the DIS PDUs onto a computer communications network;

4. Read DIS PDUs from the network and translate the information into a form usable

by the computer image generation software;

5. Display two- and three-dimensional views of aircraft flying on the range in a format

suitable for missior monitoring and debriefing;
6. Provide a simple and intuitive interface to control the various views;

7. Archive the data onto non-volatile storage; and
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8. Retrieve archived data and retransmit it over the network for a mission replay capa-

bility.

1.8 Scope

The scope of this thesis will be limited to the research, software design and im-
plementation necessary to provide a basic debriefing system that can be used at remote
locations. (By definition, a basic debriefing system will mean a system that is only suitable

for monitoring and replaying air-to-air and surface-to-air mission elements.)

Central to the development of the RDT is the need to communicate over computer
networks using the DIS protocol. (This protocol is described in the following chapter.) The
DIS standard defines numerous PDU types which provide for the exchange of entity infor-
mation as well as simulation exercise management(23:22). The scope of this project limits
the implementation of PDU types to those required for aircraft entity interaction. These
PDU types include the entity state, fire and detonation PDUs. Simulation management

PDUs fall outside the purview of this project and are not implemented.




The computer generated displays of the RDT mirror the major capabilities of the
RFMDS but do not fully emulate all its features. Additionally, radio communications
present in the RFMDS are not incorporated into the initial version of the RDT. Project
time constraints did not allow implementation of audio, although the DIS standard provides

a means for radio communications between entities.

1.4 Assumptions

This section enumerates the assumptions that were made in developing the thesis

statement and scope of this project.

1. The principle user of the RDT is someone interested in an accurate range monitor-
ing system that is capable of tracking and recording aircraft movements but who
does not require a level of detail necessary for a full engineering analysis. Aircrews

participating in the Red Flag exercises are the prime target for this project.

2. The computer image generation hardware for the RDT is a Silicon Graphics IRIS 4D
workstation. This meets the “low-cost” definition as expressed by sponsors at Nellis
AFB. Multiprocessor capabilities improve image generation speeds without altering

the basic functionality of the RDT software.

3. Existing computer network communication devices are able to transmit and receive

Ethernet packets and DIS PDUs.

4. The use of AT&T C++ or C languages is compatible with existing software applica-

tions.

5. The Silicon Graphics machines use a UNIX operating system derivative-IRIX 4.0.5

or later.

6. The third draft of the DIS version 2.0 proposed IEEE standard is the guide for
generating and interpreting DIS PDUs. (This draft is accepted by the DIS community
as the standard for applications in 1993.)




1.5 General Approach

Logically, the RDT can be divided into four major areas of effort: coraputer commu-
nications, data translation, user interface design and computer image generation. Within
each of these areas, a significant number of tasks must be completed before the entire
system can function as intended. Each of the major areas, and the tasks they encompass,

is described in the next few sections.

1.5.1 Computer Communications. Computer communication forms the key area
of the entire project. The premise of broadcasting live telemetry onto a distributed simula-
tion network cannot be accomplished without the ability to electronically capture the data
from the RFMDS and then retransmit that data over local and/or wide area networks.

The tasks necessary to establish the proper communication liuks are listed below.

1. Install a transparent connection onto the RFMDS that will allow data monitoring
without any message acknowledgements. This ensures that the RDT cannot interfere

with any RFMDS operations or be responsible for any system difficulties.
2. Monitor the RFMDS data stream and capture the data messages.

3. Convert the data messages into Ethernet packets for retransmission onto a local

network.

1.5.2 Data Translation. Data translation involves mapping the RFMDS data
messages into the proposed DIS standard PDU formats. In order to accomplish this func-

tion the following tasks must be completed.

1. Determine the specific RFMDS message types and formats tha. will provide the level

of information necessary for the image generation.

2. Define a mapping that will be used by the translation software to convert the RFMDS
messages into DIS PDUs.

3. Filter out unneeded messages from the REMDS data stream and translate the re-

quired messages iuto DIS PDUs. (This translation software will need to interface



with network communications software in order to broadcast the DIS PDUs onto a

distributed simulation network.)

1.5.8 User Interface Design. Because the RDT computer image generation is
implemented on a single werkstation, a significant effort was expended in order to capture
and mirror the complex functionality of the multiple RFMDS displays and controls. The

tasks necessary to develop a suitable user interface are:

1. Determine and then use a suitable interface design methodology that can be applied
to the development of the RDT.

2. Select from the many available input devices, such as mice, keyboard, spaceballs,
joysticks, and data gloves, those which provide the needed functionality for a set of

simple interface controls.

3. Find a set of graphical user interface tools that can be used to quickly develop a user
interface prototype. An interface prototype is a rapidly created version of some or

all of the final interface, generaily with limited functionality (5:430).

4. Through a series of user tests and design modifications, develop the final user interface

configuration.

1.5.4 Computer Image Generation. Once the DIS-formatted mission data is
available at the workstation, a computer image can be generated which depicts the oper-
ations of aircraft fiying on the Nellis ranges. The following tasks are necessary to develop

these images.

1. Determine the required set of display capabilities that are needed for a usable mission

debriefing tool.

2. Evaluate available computer image generation packages to determine the feasibility

of modifying them for use as the primary image generation software.

3. Develop an image generation software toolkit that can be used to provide the needed

views for the RDT.
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4. Integrate the image generation software with the user interface so that the views may
be controlled as desired. Iterate through a series of user tests and design modifications

until a suitable RDT final configuration is achieved.

1.6 Additional Thesis Support

The philosophy of this thesis project is not to develop as much new software as
possible, but to use existing software where it is available and compatible and then add
to its functionality where required. In keeping with this overall development concept, this
section introduces software available at the Air Force Institute of Technology (AFIT) that

provides many of the needed capabilities described previously.

1.6.1 Communication and Data Transletion.  Communications software written
by Bruce Clay exists at AFIT in the form of a set of network daemons. These daemons are
system processes which remain dormant until a request to transfer cata over the commu-
nications ports is received. One of the daemons is responsible for transmitting data onto
the network while the other daemon receives data from the network and makes it avail-
able to application programs. This software was originally created for use with SIMNET
PDUs and was subsequently modified to broadcast and receive DIS PDUs. In addition,
Bruce Clay compiled a set of routines which were used to generate and monitor Ethernet

communications.

1.6.2 Object Manager. Sheasby (18) developed a set of software methods to
manage all of the information being broadcast over the network about individual entities
participating in a distributed simulation exercise. This collection of C++ classes, called
the Object Manager inserts, updates, traverses, and deletes entities from an entity class
structure hierarchy. Additionally, the Object Manager performs the dead reckoning calcula-
tions necessary for any moving vehicles (18:3). Because the Object Manager was originally
developed for use with SIMNET, modifications were made to make it compatible with the
new DIS standard.
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1.6.8 ObjectSim. Snyaer (20) describes the construction of an application frame-
work which can be used to render models within a visual simulation environment. This
framework grew from the desire to reuse concepts and ideas within the graphics lab at AFIT
from year to year without having to “reinvent the wheel” for each new application. Object-
Sim provides a set of high level functions within its object-oriented class structures that
frees developers from the details of rendering geometry on the Silicon Graphics machines
and allows them greater time to deal with other simulation intricacies. This thesis project
and five additional thesis efforts, (4), (6), (21), (29), (9), used the ObjectSim framework
during the 1993 academic cycle at AFIT.

The Virtual cockpit (VC) is 2 flight simulator designed for use in an interactive multi-
player environment. The cockpit is constructed with commercial off-the-shelf equipment
including a head-mounted display, a hands-on throttle and stick, and a Silicon Graphics
workstation for the image generator. Sensor subsystems developed by Erichsen (4) display
the location and orientation of network players. Air and ground weapon systems brought
on-line by Gerhard (6) allow the Virtual Cockpit to employ bombs, guns and missiles in

the simulated environment.

The Synthetic Battle Bridge (SBB) (29), (21) presents an immersive, simulated en-
vironment that is used to observe distributed simulations from a battlefield commander’s
point of view. The SBB is capable of interfacing to a variety of head-mounted display
devices and a Fake Space System’s BOOM.

The Satellite Modeler, using the ObjectSim framework, was developed by Kunz (9).
This application depicts satellites in orbit around the earth and allow users to interact
with the satellite models. The Satellite Modeler provides an opportunity to explore config-

urations, orbital elements, and procedures which were previously very difficult to visualize.

Because each of these applications was built around a common framework, ideas and
methods were shared b-tween them which provided additional opportunities for bringing
features and functionality to the RDT that might otherwise have been impractical because

of time constraints.
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1.7 Thesis Presentation

This thesis is divided into seven chapters and appendices. Chapter 1I presents back-
ground information relevant to this thesis project. In particular, the chapter provides
insight into the concepts of distributed interactive simulation, RFMDS, Silicon Graphics
image generation software and computer communications. Chapter III discusses the design
of the computer communications and data translation areas while Chapter IV describes
the design of the user interface and image generation software. Chapter V details the
implementation of the complete RDT software system. Chapter VI discusses the perfor-
mance characteristics of the software. Chapter VII recaps the thesis project and proposes

recommendations for future work.
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II. Background

This chapter lays the foundation for understanding the concepts of distributed in-
teractive simulation that are used within this thesis project. In addition, a description of
the RFMDS provides an overview and the technical details necessary to understand how
the RDT interface to RFMDS can be achieved. The final section of this chapter outlines
the characteristics of a software rendering library developed by Silicon Graphics, Inc. This
library, known as Performer, comprises the basic toolkit for generating the 3D computer

images necessary for a visual simulation application such as the RDT.

2.1 Distributed Interactive Stmulation

2.1.1 Evolution. Distributed interactive simulation had its beginnings in 1983
when the Defense Advanced Research Projects Agency (DARPA now called ARPA) initi-
ated a program to enhance tactical team performance via distributed simulator networking
(SIMNET). The first conceptual demonstration was conducted in 1984 following comple-
tion of the initial system design (12:1). Thorpe reports that SIMNET was used to train
U.S. troops for the Canadian Army Tropby (CAT) Competition in 1987. (CAT 87 was the
first year that a U.S. tank team placed first.) The use of SIMNET to familiarize partici-
pating units with the exercise range and improve crew coordination, team interaction, and
command and control skills appeared to enhance the performance of U.S. Army tank units
(27:266). Subsequent tests performed in 1987 at Grafenwoehr, Germany and Fort Benning,
Georgia confirmed that the SIMNET technology “holds potential for both readiness and
new system development and acquisition (27:272).” By the end of 1987 helicopter simu-
lators had been delivered and installed at Ft. Rucker, Alabama and tank simulators were
likewise in place at Ft. Knox, Kentucky. At the completion of the program there were a
total of 250 simulators installed at more than 9 locations (12:1). SIMNET technology is
stiil used today to train U.S. Army tank teams around the country.

SIMNET was intended to provide a method for simulating battles involving many
vehicles by interconnecting large numbers of interactive vehicle simulators on a common

network. It was called distributed because the simulators which supported the simula-
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tion were not physically restricted to one location but rather operated on both local and
wide area petworks. The formalized agreement between the content and format of mes-
sages transmitted and received on the network by the simulators was cailed the simulation
protocol (14:1). These protocols were primarily developed to support armored vehicle

simulations within the SIMNET environment (7:128).

“The primary mission of D1S is to create synthetic, virtual representations of warfare
environments for the purpose of practicing warfighting skills . .. when cost, safety, environ-
mental and political constraints do not permit the field training and testing necessary
to maintain combat readiness(28:3).” DIS networking protocols evolved from the original
SIMNET protocols as the concepts were extended to include all classes of vehicles, consist-
ing of high performance aircraft, surface and sub-surface naval vessels, and even satellites.
1t is interesting to note that the emerging standard for the DIS protocol is very similar to
the original SIMNET protocol despite the extension to vehicles with wider ranges of ma-
neuverability. (Reference (18:13-15) provides an overview of the similarities and differences

of the SIMNET and DIS protocols.)

2.1.£ DIS Objectives.  Principles of the emerging DIS standards and their appli-
cations are introduced in this section. Basic architectural concepts include (23:2):
1. No central computer controls the entire simulation exercise;

2. Autonomous simulation applications are responsible for maintaining the state of one

or more simulation entities;
3. A standard protocol is used for communicating “ground truth” data;
4. Changes in the state of an entity are communicated by simulation applications;
5. Perception of events or other entities is determined by the receiving application;
6. Dead reckoning algorithms are used to reduce communications processing.

The proposed IEEE draft in reference (23) provides a definition of each of these
concepts. This implies that the RDT must use standard protocol formats to convey the
“ground truth” of aircraft maneuvering on the Nellis ranges to other simulators. Dead

reckoning algorithms must be used to predict aircraft positions and orientations so that
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the number of transmitted PDUs can be kept as low as possible. This reduces network
communications traffic from a single simulator and increases the scale of the exercise that

can be supported on a given network.

2.1.8 DIS PDUs. DIS simulators exchange information with each other by
using a communications network. The messages which are used to convey the state and
event information within the simulation are called PDUs or protocol data units. There
are currently 27 different PDUs defined within DIS. A complete description of each of
these PDUs can be found in reference (23) and can be grouped into the following general

categories:

1. Entity information,

2. Entity interaction (such as weapons employment, logistics support and collisions),
3. Simulation management,

4. Electromagnetic Emissions,

5. Radio communications.

Of these 27 PDUs, only 12 of the PDUs have a fixed length. Each of the remaining
PDUs has a variable length dependent upon many factors including numbers of articulated
parts, numbers and types of emitters, length of audio transmissions, and amount of data.
The PDUs of principal concern for the RDT are the entity state, fire and detonation PDUs.
The entity state PDU has a minimum length of 144 bytes and conveys the identification,
markings, position, and orientation of an entity. The fire PDU has a fixed length of 96
bytes and maps a shooter/target pair to a single weapons employment event. Variable
length detonation PDUs (minimum length of 104 bytes) describe the final results of those
weapon employments. (At some future time the incorporation of other PDUs into the
RDT offers the possibility of merging radio communications with position and weapon

event information.)

Table 1 depicts the entity state PDU as an example of the content and format of the
DIS PDUs. The mapping of the Red Flag data messages to the appropriate fields within
the DIS PDUs is covered in Chapter IV.
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| Word | Field | ByteO | Bytel | Byte2 | Byte3 ]

o PDU Header Version | Exer ID | PDU Type | Pad
1 Time Stamp
2 Length Pad
3| Entity/Force ID Size Application
4 Entity Force | # Artic Parts
5 Type Kind Domain Country
6 Category | Subcategory | Specific | Extra
7 Alt Type Kind Domain Country
8 Category | Subcategory | Specific | Extra
9 Location X Component
10 Y Component
11 Z Component
12-13 Linear Velocity X Component
14-15 Y Component
16-17 Z Component
18 Orientation Psi
19 Theta
20 Phi
21 Appearance Appearance
22 | Dead Reckon Parms | Algorithm | Unused
23-24 Unused
25 Linear Accel X Component
26 Linear Accel Y Component
27 Linear Accel Z Component
28 Angular Velocity X Component
29 Angular Velocity Y Component
30 Angular Velocity Z Component
31| Entity Marking Char Set | Marking
32-33 (Marking continued)
34 Capabilities Boolean fields

Table 1. Entity State Protocol Data Unit (22)
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2.1.4 Dead Reckoning. As seen within the example Entity State PDU of Ta-
ble 1, the PDU contains more information than just an entity’s position, identification
and orientation. Dead reckoning parameters are also included and are used to extrapolate
or predict an entity’s location and orientation at some point in the future. Inputs to the
dead reckoning algorithm are an entity’s current location and orientation and the dead
reckoning parameters from the most recent Entity State PDU. An Entity State PDU is
not transmitted at the update rate of the originating simulator. Instead, a PDU is only
generated when the discrepancy between an entity’s current position and/or orientation

exceeds a predetermined threshold(7:128).

To illustrate this concept, consider an aircraft traveling at a constant velocity on a
fixed heading. If Entity State PDUs are generated to describe the motion of this aircraft
without dead reckoning, then at each new time step of the simulation a new PDU must
be constructed and sent. If dead reckoning is used, only the first PDU needs to be created
and broadcast. As long as the aircraft remains in stable flight at the same parameters and
does not deviate from its flight path, another PDU need never be sent from the originating
simulator. This creates a problem, however, for simulators that connect to the network
after the first PDU is sent. These simulators do not know about the existing aircraft
and thus generate an incorrect image. This violates the concept of “ground truth.” To
overcome this inconsistency, simulators are required to generate a PDU at a minimum
rate of one every five seconds. Thus the the greatest time delay incurred by any newly
connected simulator would be five seconds before the “ground truth™ about all entities

within the simulation is received(23:24).

As one of the basic concepts underlying the DIS architecture, dead reckoning is
important because it reduces the number of PDUs which must be broadcast for a given
aircraft and minimizes network traffic. Research on a single F-16 aerial demonstration pro-
file showed that network traffic could be reduced by as much as 83 percent over continuous
postion updates. Dead reckoning also diminishes the computational processing associated

with receipt of each new PDU because fewer PDUs are received (7:128).

Dead reckoning is a tradeoff among three factors: network traffic requirements, com-

putational power, and the precision of the entity’s location and orientation. The two
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factors which control these tradeoffs are the choice of the dead reckoning algorithm and
the parameters which dictate when a PDU is generated. These parameters, or thresh-
olds, represent the maximum allowable difference between an entity’s predicted versus
actual position/orientation. A low threshold implies that only small deviations from the
entity’s actual position are allowed before a PDU is generated. This may require more
PDUs to be transmitted as an entity maneuvers outside the threshold of its predicted
position/orientation; consequently network traffic increases. A higher threshold or larger
difference between the predicted and actual ; osition/orientation may result in fewer PDUs
transmitted onto the network because of fewer deviations from the predicted movement.
This reduction decreases network traffic. The benefits of network bandwidth reduction
made possible by dead reckoning are not free. There is a significant difference in the com-
putational cost between performing a position update (copy to memory) and applying the

dead reckoning equations to calculate a new position(7:129).

Harvey points out that the dead reckoning concepts, which were developed for use
in the SIMNET armored vehicle environment, apply equally to the DIS environments
of high speed aircraft and space vehicles (7:129-130). The rate of change at which a
vehicle deviates from the steady state condition (acceleration) is the determining factor for
generating new PDUs. The majority of movements for both types of vehicles falls within
the steady state conditions and are accurately predicted by the algorithms. Harvey also
a ues that “there is much similarity between the rates at which armored vehicles and high
performance aircraft can change their orientations and direction of travel (7:130)." Turn
rates generated by slow moving tanks and fast moving aircraft are comparable and are

similarly suitable for dead reckoning calculations.

The DIS protocol requires that dead reckoning be performed on both ends of the com-
munication network (23:23-24). A simulator propagating an aircraft model along a given
path in its environment maintains a dead reckoning model of the aircraft movements and
transmits a PDU only when the difference between the acutal position and the predicted
position exceeds the thresholds. The receiving simulator updates the aircraft position as a
new PDU arrives. Otherwise the position and orientation of the aircraft for the remainder

of the time is computed using the dead reckoning algorithms and parameters.
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The DIS standard defines eight dead reckoning models to be used in distributed
simulation. Each of these models is a unique combination of the dead reckoning algo-
rithms. Sheasby provides a summary of the algorithms and models used in DIS (18:18-19).
Because angular and linear accelerations are not available in the RFMDS data, only zero-
order orientation and zero/first-order position dead reckoning are available for use by the
RDT. Zero-order orientation and position dead reckoning simply means that the loca-
tion/orientation is maintained constant over the frame interval (18:18-19). First-order
position dead reckoning consists of integrating linear velocity over the frame interval. The

following equations are used (18:18):

z = z4+V,t : (1)
vV = y+ VWt (2
2 = z4+ Vit (3)

The use of these algorithms for the RDT constitutes the linear dead reckoning modsl.
Regardless of the dead reckoning model and the specific algorithms which comprise the
model, a definite decrease in network traffic can be expected.

2.1.5 Survey of DIS Applications. A movement from the SIMNET protocols to
the emerging DIS standard began in 1992. A number of DIS applications under devel-
opment are furthering the industry’s knowledge of this new protocol and its suitability
for real-time, large-scale distributed simulation. This section highlights the efforts of a
handful of organizations, some affiliated with AFIT, that are developing DIS applications
to contribute to this effort.

AFIT is one of several academic institutions involved in researching the capabilities
of distributed simulation and virtual reality. The RDT and each of the applications de-
scribed in Chapter I ( Virtual Cockpit, Synthetic Battle Bridge, Satellite Modeller) rely on
a common DIS entity object manager to monitor anc, transfer information to/from the

network.

20




The Naval Postgraduate School (NPS) in Monterey, California has developed a real-
time, workstation based, 3D visual simulation system utilizing DIS protocols. The system,
called NPSNET, displays vehicle movements over the ground or in the air. The project
centers on the development of public domain graphics simulation software which utilizes

off-the-shelf hardware (19:2).

The Virtual Cockpit, Synthetic Battle Bridge and NPSNET DIS applications were
demonstrated in August of 1993 at the Association for Computing Machinery’s (ACM)
Special Interest Group for Computer Graphics (SIGGRAPH) convention at Anaheim, Cal-
ifornia. Local Ethernet connections between two separate booths at the convention and a
T-1 line to ARPA’s simulation center at Arlington, Virginia demonstrated heterogeneous

DIS applications interacting in a common environment.

The Institute for Simulation and Training (IST) at the University of Central Florida
(UCF) in Orlando has also developed a PC-based Computer Generated Forces testbed
that incorporates the DIS standard. The testbed consists of two major components: a

Simulator and an Operator Interface.

The Simulator is a tool that is used to create and control semi-autonomous forces
(SAF). A “human commander” provides the goals and objectives for the SAF entities in the
form of keyboard or script files and the Simulator makes the choices for entity movement,
route planning, obstacle avoidance, and target engagement. The Operator Interface is a
high level graphic interface to the Simulator. Instead of using keyboard or script files,

mouse-driven corumand menus greatly simplify control of the underlying Simulator.

Many of these DIS applications have been sponsored by the Department of Defense
for use in military training environments. Growing emphasis in each of the military services
as well as continued support from ARPA will no doubt continue to foster the development

of numerous DIS applications in the coming years.

2.2 Computer Communications

A series of communication protocols is in use at various levels below the visibility

of DIS application programs. Because of their complexity, these protocols are designed in
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Application
Presentation
Session
Transport
Network
Data Link
Physical

Table 2. OSI Model

layers to make implementation more manageable. This section gives a brief synopsis of the
protocols used in the different levels of the Open Systems Interconnection (OSI) Reference
Model and their correlation to RDT.

The International Standards Organization (ISO) developed a guide, not a specifi-
cation, for an international framework in which standards could be developed for open
communications between computers. The OSI model is the result of that proposal and
was developed between 1977 and 1984 (24:174). The seven layers of the OSI model are

shown in Table 2. The principles used to derive the seven layers are:

1. Layers are created where different levels of abstraction are needed.
2. Each layer performs a weli defined function.

3. The functions of each layer are chosen with an eye toward defining internationally
standardized protocols.

4. The layer boundaries minimize the information flow across the interfaces.

5. The number of layers is a trade off between architectural complexity and distinct

functionality (25:14).

For a comprehensive explanation of each of the seven OS] layers and their functions
see Tannenbaum (25). In terms of the RDT, it is important to understand that each of
the layers provides a well-defined interface between the layers directly above and below it.
This has the advantage of isolating changes that occur within a given layer from any of
the other layers as long as the interfaces remain the same. Protocols exist at each layer

to define the interface. A protocol suite is a collection of protocols irom more than one
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Figure 3. Simplified 4-Layer Model Connecting Two Systems

layer that forms the basis for a useful network (24:174). An example of a protocol suite, or
protocol family would be the Terminal Connection Protocol/Internet Protocol (TCP/IP)

suite used for communication between nodes on the ARPA network.

For explanation purposes in this thesis, the seven OSI layers have been simplified
into the 4-layer model used by Stevens (24). Figure 3 shows the model for two systems
that are connected by a network. The process leyer consists of the top three layers of the
OSI model — the session, presentation and application layers. Application programs exist
at the process layer. The bottom two layers of the OSI model are combined into the data
link layer. The data-link layer combines the network and hardware characteristics into a

single, simplified layer.

The example portrayed in Figure 4 shows two hosts using DIS and the User Datagram
Protocol/Internet Protocol (UDP/IP) suite to communicate over an Ethernet network
(24:176). Data that is sent from one host to the other is formated according to the DIS
protocol. The dashed line between the two hosts at the DIS level does not represent a

physical connection but rather an abstraction. The actual flow of data goes down from the
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Figure 4. 4-Layer Model for DIS Application over UDP/IP on an Ethernet

DIS/process layer through the UDP/transport layer to the IP/network layer. The network
layer passes the data through to the Ethernet/data-link layer for communication to the
other host. At the receiving end, the process is reversed going up from the data-link layer to
the process layer of the DIS application. At each step down through the layers, additional
header information is attached to the original data so that the actual data sent contains
the original DIS PDU, and a UDP header, IP header, and Ethernet header. These headers
are stripped on the receiving end as the PDU moves up through the layers. When the
PDU finally arrives at the process layer all header information has been removed and only
the DIS PDU is presented to the application.

Figure 5 depicts the standard format for an Ethernet frame or packet and shows
how the DIS PDU is packaged in the Ethernet protocol at the lowest layer. Note that
the length of the data in a single Ethernet frame may not exceed 1500 bytes (25:145). In
situations where the length of the data exceeds 1500 bytes, the data must be segmented or
fragmented between multiple Ethernet packets and reconstructed at the receiving end by
the IP layer. This simple example is particularly relevant to DIS applications, specifically
RDT, as this standard dictates the use of UDP/IP protocols for broadcasting PDUs onto
a distributed network.

Data transfer from the RFMDS to a REMDS/DIS translator and out onto a network

involve communications at all layers over multiple machine architectures. The OSI Model
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guidelines and the standardized hardware and software implementations of the computer
industry are the key to successfully transmitting RFMDS telemetry to simulator applica-

tions.

2.8 Red Flag Measurement and Debriefing System Description

This section describes the RFMDS and provides the background information needed
to understand how the RDT interfaces with RFMDS. This includes the system elements
required to transform a modern air battle into digital telemetry data, the displays available
to an aircrew member to help reconstruct and accurately debrief a mission, as well as the

formats of the RFMDS data and overall RFMDS capabilities.

2.8.1 System Overview. In the deserts of Nevada and California lie the Red
Flag exercise ranges managed by Nellis A7~ This area measures approximately 150 x 60
nautical miles and encompasses roughly . ) square miles (16:34). It is on these ranges
that the mock battles of the Red Flag missions take place and aircrews learn the tactics
that may one day keep them alive and ensure mission success. The RFMDS provides the
technological tool to monitor, in real time, up to 136 aircraft participating in an exercise
on the range. The RFMDS is capable of full state vector tracking of up to 36 aircraft
equipped with specially instrumented pods. These aircraft are referred to as high-activity

aircraft. Position tracking of up to 100 other aircraft is accomplished by sharing radar
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Figure 6. AIS Components

data from Federal Aviation Administration (FAA) gap-filler radars located on the range

complex.

In addition to position information about aircraft on the range, the RFMDS also
interfaces with up to 30 threat emitter simulators and simulates the firing of up to 50
simultaneous missiles and dropping of 22 unguided bombs for 2ach high-activity aircraft
(16:36). The elements required to bring all of this data into a central repository and
present it to aircrews is the job of the four main elements of the RFMDS. These four ma-
jor system elements are the Aircraft Instrumentation Subsystem (AIS), Tracking Instru-
mentation Subsystem (TIS), Control and Computation Subsystem (CCS) and the Display
and Debriefing Subsystem (DDS). Each of these subsystems is described in the following

subsections.

2.8.2 AIS.  The AIS is an externally mounted, 5-inch diameter pod physically
similar to the Sidewinder (AIM-9) missile. As shown in Figure 6, the AIS pod contains a
transponder, a digital interface unit, a radar altimeter, an inertial reference unit and an
air data sensor. The AIS interfaces with the aircraft systems to determine the aircraft’s
flight parameters and weapon systems status. Flight telemeiry and weapons data are
then transmitted over a bi-directional radio datalink to TIS ground facilities for real-time

processing (22:2-6).
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2.9.3 TIS. The TIS consists of two unmanned master stations and a total of 19
remote interrogator stations. These stations permit the exchange of data between ground-
based main frame computers at Nellis AFB and the AIS pods. Figure 7 depicts the primary
range airspace and the locations of each of the master and remote stations. These stations
are positioned to provide full coverage of the range airspace from 500 ft up to 60,000
ft. Certain areas of the range have altitude coverage down to 100ft. The remote stations
depicted in Figure 8 relay master station transmissions to the 36 high-activity aircraft, and

in turn, relay AIS air-to-ground transmissions back to one of the master stations (22:2-8).

Each master station consists of a computer, microwave datalink, UHF radios and
calibration equipment. The computer is used to process communications, measure aircr aft
positions, and calibrate TIS equipment. The datalink is the conduit for transmitting the
telemetry information back to the CCS at Nellis.

UHF radios provide the two-way communications between pilot and mission safety
observers/controllers in the Red Flag building. The calibration transponder, similar in
function to an AIS pod, enables the RFMDS to do calibration and performance checks
without aircraft on the range. One of these checks, called a 255, causes each master
statior to transmit its position back to the CCS as it is computed by triangulation from
each of the remotes. RFMDS displays then depict two stationary aircraft at each of the

master site locations.

2.3.4 CCS. The Control and Computation Subsystem is the primary processor
of RMFDS data and uses Perkin-Elmer mainframes to support communications between
RFMDS subsystems and to record system/mission data in real time. In addition, the
CCS computes the state vectors for each of the high-activity aircraft by processing range
measurements from both the TIS and AIS subsystems. The CCS computers also monitor
maneuvering aircraft to determine whether they exceed preset limits for acceleration, de-
scent rate, angle of attack or airspeed. The final major activity performed by the CCS is to
compute weapon simulations which predict the flight paths and results of missiles/bombs
employed by high-activity aircraft. All of this data is then formated and transmitted to
the display subsystems for real-time monitoring (22:2-10).



Figure 7. RFMDS Range Setup
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Figure 8. TIS Remote Station Assembly

2.83.5 DDS. The Dicplay and Debriefing subsystem selectively rscords data re-
ceived from the CCS during live operations on magnetic disk media for post-flight analysis.
This data can be displayed on one of several DDS consoles or optionally projected onto
large viewing screens located in the debriefing rooms or main auditorium. Up to eight

channels of audio, UHF radio communciations, can be monitored and recorded as well.

Each of the DDS consoles contains three, full-color monitors, which present both
graphic and alphanumeric data. The graphic images generated on the displays are of two
general types, either two-dimensional (2D} or three-dimensional (3D). The 2D display,
sometimes referred to as the “God’s eye view,” or plan view, shows the range and aircraft

silhouettes from a vantage point high above the range.

Figure 9 shows a simplified version of the plan view. High-activity aircraft are de-
picted with 2D line drawings and low-activity aircraft are depicted with a triangle repre-
sentation. Aircraft identification and altitude information is displayed next to the aircraft
icon. Range boundaries are drawn and give accurate indications of the position of each

aircraft at all times.
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Figure 9. DDS Plan View (Simplified)

A number of options exist on the 3D displays; however, only those displays commonly
used during a flight debrief are described in this thesis. One of the primary options, the
centroid view (Figure 10), portrays aircraft, ground threats, targets, and simplified terrain
features in a 3D viewing window. This display can be centered on any aircraft, threat or
pairing of the two. Additionally, the view can be rotated 360 degrees about the vertical
axis or tilted to present a vertical representation of the range airspace, which is particularly

useful to show aircraft altitude separation.

A second option available on the 3D display is the cockpit view. This view shows the
out-the-window scene from the point of view of any of the high-activity aircraft. Again,
simple line drawings are used to render the horizon, sun, aircraft in the field of view and
the cockpit outline. Figure 11 depicts an F-16 in a descending left hand turn. Infrared
and radar missile cockpit cues are also available in this 3D display.

The third CRT monitor displays digital data in tabular alphanumeric formats. The
data covers every aspect of range operations, from aircraft and threat monitoring to equip-
ment status and testing. Only the displays used for air combat debriefing are highlighted.
The Exercise-Data display describes who the aircraft and threat participants are and the
roles that they will play during the exercise. The Pilot-Data display shows the various
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Figure 10. DDS Centroid View (Simplified)

flight parameters that would be available to a pilot in the cockpit, such as airspeed, angle
of attack, pitch, roll, heading and altitude. The Quick-Look display provides selected mis-
sion and exercise data for overview of mission participants. The Summary-Data display
enumerates the weapon firings and results for all participating aircraft and threats (22:4-1
— 4-68). In order to provide any of these displays, data must be transferred from the CCS
to the DDS where the images can be generated. The contents and formats of the CCS

messages are described in the next section.

2.3.6 RFMDS Messages. The CCS communicates with the DDS over a dedicated
data link at an aggregate rate of 1.344 megabits/second. Every 100 milliseconds the CCS
and DDS transmit data back and forth in order to maintain synchronization and to update
the status of all participants. This translates to position updates being broadcast to the
DDS image generators 10 times every second(3:A-5) and allows smooth animation of all
the aircraft on the DDS displays. A 10 hertz update rate also provides sufficient data to

perform an in-depth engineering analysis of both aircraft and weapon system performance.
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Figure 11. DDS Cockpit View (Simplified)

In the current implementation of RFMDS there are 34 different message types defined
for the CCS/DDS interface(3:A-1). These messages relay information about the following

general areas:

1. Bomb, missile and target status

2. Countermeasures

3. Radar information

4. Integrated air defense status/control

5. Participant identification and maneuver data
6. Range time

7. Radio transmissions

8. Electronic warfare weapon data.

Messages sent to the DDS in each 100 msec time slice are aggregated into a single
fixed-length buffer with the range time message first. After all messages for the time slice
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[ Word | Byte0O | Bytel | Byte2 | Byte3d |

0 Messag-é label Blocks Words
1| Mission Id Color A/C Number | A/C Type
2 Pod ID EW Designator All
3 Spare | Mission Code Logical Player
4-5 Aircraft Tail Number
6-7 Pilot Squadron or Call Sign
8-10 Pilot Name
11 G Limit AOA Limit IAS Limit
12 | Pod Type A/C Group Descent Limit
13 Weapon Type (1) Weapon Type (2)
14 Weapon Type (3) Weapon Type (4)
15 Weapon Load (1) Weapon Load (2)
17 Spare
18-648 Repeat words 1 - 18 for up to 36 aircraft
649 Vertical Parity Word

Table 3. High-Activity Participant Data Message

have been transferred to the buffer, the contents of the buffer are transmitted to the DDSs.
The buffer is then cleared and made available for another cycle. The contents of each of
the message types varies dramatically; however, each shares a common format for header

information that is used to decode the contents of the message.

Tables 3 and 4 show examples of the high activity participant and high activity
maneuver data messages respectively. Common to both are the message label, the number
of blocks and the number of words in the message. The message label identifies the message
type and is in the range from 1 - 34. The number of blocks shows the number of aircraft
for which information is provided. The number of words indicates the total length of the
message(3:A- 42). For each of the 36 possible high activity aircraft in a maneuver data
message (type 3), words 1 to 22 are repeated and the total leugth of the message is 3176
bytes. The messages of Tables 3 and 4 together provide all of the available and necessary

information about the identity, position, orientation and status of an exercise participant.

2.3.7 Hardware Communications Configuration. The CCS is configured with

five communication ports to which the dedicated data links may be connected. Currently,
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| Word | Byte 0 | Byte 1 Byte2 | Byte 3 |
0| Message Label Blocks T Words
1 Spare Status Bits Weapons Bits Hazard Bits
2 IR Tone Interrogator ITrace Aircraft Number
3 Range Position X Coordinate
4 Range Position Y Coordinate
5 Range Position Z Coordinate
6 Orientation/Heading
7 Orientation/Pitch
8 Orientation/Roll
9 Angle of Attack Angle of Sideslip
10 Dive/Climb Angle Pilot Yaw
11 Normal Acceleration Mach
12 True Airspeed(Knots) Indicated Airspeed (Knots)
13 Rate of Climb X Velocity
14 Y Velocity Z Velocity
15 Inventory (1) Inventory (2)
16 Inventory (3) Inventory (4)
17 TD Radar Azimuth TD Radar Elevation
18 TD IR Seeker Azimuth TD IR Seeker Elevation
19 Pulse Repetition Freq Tone Direction Finding Elevation
20 | Optimum A/C Tgt | Weapon Selected | Radar Mode I LGB Designated
22 Spare
23-792 Repeat words 1 to 22 for up to 36 aircraft
793 Vertical Parity Word ]

Table 4. Maneuver Data Message
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three DDS stations are attached to ports one through three. Port four is connected to a
VAX computer that is used to prepare hard copy printouts of mission elements for later
distribution to aircrews for post mission analysis. Port five is not normally connected,;
although it has the additional capability to extract selected messages from the CCS data

stream under program control.

Because port four is not connected to - DDS, it is configured such that acknowledge-
ments from the VAX computer are not required. This forms a one-way data stream from
the CCS to the VAX, making port four the optimum point for a transparent connection
of the RDT to the RFMDS. All information that is transmitted to the DDSs is sent to the
VAX when port four is turned on except digitized audio data. This means that another
audio data source must be found if the eight channels of radio communications are to be

made available to the RDT.

2.4 Performer

Inherent in any visual simulation application is the need to reduce the complexity
involved in developing the image generation and improve the performance or rate at which
the images can be displayed on the computer screen or display device. Because the RDT
shares many of the attributes of a visual simulation, these same needs apply. Silicon
Graphics, Inc. has attempted to solve some of the complexity associated with developing
visual simulations with their Performer library. This library is an effort to create a stan-
dard set of procedures specifically designed to meet the needs of visual simulation. This
section provides a brief overview of Performer, and the Performer Programmer’s Manual

is recommended as the definitive reference.

Performer is a library of C-callable routines that create a new interface to the SGI
graphics pipeline. This interface vastly improves a number of areas of the graphics library
(GL) interface that comes standard with each SGI platform or machine. The Performer
library removes many of the chores associated with programming the SGI, and captures the

corporate expertise of SGI for programming their hardware pipeline into practical routines.
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Figure 12. IRIS Performer Library Hierarchy

The main components of the Performer toolkit are two libraries. One library, libpr,
provides optimized low-]evel rendering functions, state control, and other fundamental real
time graphics functions while the other library, libpf, provides a visual simulation develop-
ment environment that layers multiprocessing, database traversal and rendering on top of
the libpr library. Figure 12 illustrates the relationship between an application program, the
performer libraries, the IRIS Graphics Library, and the IRIX operating system (11:2-1).
As the figure indicates, the application program has direct access to all of the performer
library functions as well as free access to the graphics library and operating system func-
tions. This allows general development within the performer framework and specialized

development with the graphics libraries as required.

Performer maintains an internal data structure, called the geometry tree, which is
traversed during the rendering process. This tree contains the common geometry types used
on the SGI. Geometry nodes, or geodes, can hold polygons, triangle meshes, light points,
and many other types of geometric primitives, and are the leaves in the geometry tree.
The tree also holds additional information that is useful in changing the characteristics
and presentation of the final image. Examples of the types of additional information
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Figure 13. IRIS Performer Node Hierarchy

are: switching distances and models to be used when a different level of detail is desired,

animation sequences, and the types of coordinate system used by the various geodes.

Because the geometry tree is not dependent on a particular external geometry format,
any format which can be converted to the Performer internal geometry format can be
employed in the tree. This conversion is done through file reader routines that are used
with one of three different geometry formats— Multigen ‘ fit’ format, SGI *.sgi’ format and
a .bin’ format. The Multigen .fit reader allows all of the power and hierarchy expression
available with the Multigen modeling tool, which makes it ideal for use in Performer

applications with minimal effort.

Performeralso maintains state information in the tree. These nodes, called geostates,
hold details about mate:ials, textures, transparency, lighting conditions, and other facts
which are normally part of the GL state. This allows Performer to easily render multiple
textures, transparency, and effects, through its built-in state management features. Figure
13 depicts the hierarchy of different nodes that can be used to build an application database
(11:5-2). More compiete information about each of these nodes and their properties can

be found in the documentation supplied with the Performer software.
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Performer renders its geometry tree very efficiently. According to Silicon Graphics,
Performer maximizes frame rates for the SG geometry pipeline. This implies that the
limiting factors for efficiently rendering & set of geometry are dependent on the complexity
of the geometry and scene management, not on rendering code efficiency, when Performer

is used.

Another breakthrough in Performer is obtained through its multiprocess manage-
ment features. Performer provides an abstract, easy to use model for using up to three
processes on a multi-processor machine. This model dedicates one process to drawing,
one to culling, and one to the application managing the scene. (Culling is the process of
removing geometric objects from the scene because they are not visibie within the current
field of view.) These processes are then distributed among the available processors and
communicate with each other through shared memory. This feature is also extensible to

machines with more than one rendering pipeline.

Other features in Performer include multiple channels (viewports) into a scene, an
easy to use viewing model, and an extensive math library. Performer has built-in collision
detection features, intersection testing, and special effects processing (fog, haze, time of

day, earth-sky, etc.)

All of these features and routines combine to provide a libiary of computer image
generation software that is adaptable to applications in the visual simulation environment
and specifically to the development of the RDT. Chapters 3 and 4 build upon this back-
ground information to construct the designs for the computer communications, translation

and image generation functions of the RDT.
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III. Computer Communications and Data Translation Design

This chapter presents a pattern, or design, for creating two major components of
the RDT: the ccmputer communications component (CCC) a .d the data translation com-
ponent(DTC). Issues related to the user interface and visualization component (IVC) are
addressed in Chapter IV. A description of each of these two components begins by first
stating the objective or functional goal that the implementation must achieve and then
defining the operating characteristics or constraints under which the system must oper-
ate. Next, possible approaches to accomplishing the design objective are enumerated along
with their advantages and/or disadvantages. The reason for selecting one approach over
another for the final design is also indicated. Finally, each component description details
the algorithms, methods and devices chosen to carry out the plan of attack.

3.1 Computer Communications

The two principal objectives of the computer communications component (CCC) are
to (a) install a transparent device into existing RFMDS data lines to create a one-way
data stream that can be used to monitor data messages sent from the CCS to each of the
DDS computers; and (b) reformat and broadcast the data messages as Ethernet packets
onto a local area network for use by the DTC. (The requirement to use the Ethernet
protocols in the data link layer is self-imposed because of the availablity of both software
and hardware at AFIT that can be used to transmit, receive, and monitor Ethernet packets.
In addition, Ethernet has a 10 megabit/sec (Mbps) bandwidth (25:144) that is easily
capable of delivering the 1.344 Mbps of data sent by the RFMDS.)

3.1.1 Communications Analysis. Figure 14 represents the RFMDS hardware
configuration describe< ‘n Chapter II. The CCS and the three DDS computers are located
on the ground floor of the Red Flag building in the main computer room. Ports one through
three of the CCS are each connected to one of the three DDS computers. Each DDS
computer controls two DDS consoles which are located in debriefing rooms throughout the
building. A total of six DDS consoles are available for simultaneous use to either monitor

live missions or replay past exercises for mission debriefs. The communications channels
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Figure 14. RFMDS Hardware Configuration

between the CCS and DDS computers are bi-directional data streams and many CCS to

DDS messages require DDS acknowledgements.

The VAX computer connected to port four, is physically located in a room adjacent
to the CCS/DDS computer room. Data sent to the VAX from the CCS is transmitted using
the CCITT V.35 protocol using Pilkington fiber modems. The fiber modem retransmits
the messages using Pilkington’s proprietary protocol over a fiber optic cable to a second
Pilkington fiber modem. This second modem converts the data back into the original
V.35 protocol and forwards the messages to a Talon communications card within the VAX
computer. Message acknowledgments from the VAX computer are neither required nor

expected.

Workspace for AFIT computers located across the hall from the VAX computer in
room 115/116 is a straight-line distance of approximately 50 to 75 feet. A fiber optic cable,
installed by Cubic Corporation (the RFMDS developer), connects computers in room 116

to a DDS console in room 234 (one of the six debriefing rooms).
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Discussions about the software programming of the RFMDS with Bill Saucier, former

Cubic Corporation engineer, revealed the following essential information.

1. Messages to be sent to the VAX computer are accumulated into a buffer before being
transmitted as a single fixed-size data block. (The maximum size alluwed for the
data block is 8000 bytes, but the full capacity is rarely used. The VAX computer is
set to receive only 6144 byte blocks.)

2. The first message within each block is the range time message.

3. Subsequent messages are placed sequentially in the block until either there are no
remaining messages for the current 100msec time slice, or the block is filled to ca-

pacity. These events trigger a parity calculation and the transmission of the data

block.

4. A series of three or more bytes containing the hexidecimal value ‘Ox7f’ preceed the
data messages in the block. A single hexidecimal byte containing ‘Oxfl” in the message

type field signals the end of any further messages in the block.

5. Excess space at the end of the fixed-size block is unused.

3.1.2 Design Resolution.  The hardware and software characteristics, as well as
the details of the system’s physical layout described above, present a number of possible
approaches for the design of the CCC. This section examines each of the possibilities and
presents the rationale behind the selection of the final design.

At least three possibilities exist for installing a communications monitoring device
into the RFMDS data stream. The first option involves connecting directly to the unused
port, number five, of the CCS. Such a connection, however, would require a software
modification to the RFMDS kernel and many hours of dedicated system development time.
The potential for problems introduced by modifications into an already complex system far
outweigh any benefit that could be derived by using this method over other possibilities.
Even the slightest inconsistency in the interface with the CCS could negatively impact the
day-to-day operations of Red Flag and violate our major design objective of transparency.

Connecting to port five was not considered a viable option.
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Figure 15. Possible ‘T’ Junction Placements

The other two possibilities both involve creating a ‘T’ junction into the communica-
tions link between the CCS and the VAX computer attached to port four. The difference
between the two approaches is in the placement of the junction. Option one, depicted in
View A of Figure 15, places the ‘T” into the fiber link between the Pilkington modems.
Option two puts the ‘T’ between the second Pilkington modem and the VAX computer.

In order for option one to be successful, a fiber splitter must be inserted between
the two modems. Because the protocol used between the modems is proprietary, a third
Piikington modem at the end of the ‘T’ is necessary to recover the original V.35 data.
Discussions with the distributers of the Pilkington modem revealed that the modems cur-
rently in place in the RFMDS are no longer manufactured and upgraded replacements
are available at substantial cost. Placement of a fiber optic splitter into the fiber cable
would potentially cause a reduction in signal strength at the second Pilkington modem.
Information was not available about the extent of any such signal reduction and its impact

on normal operations.

View B of Figure 15 shows the ‘T’ junction placement between the VAX and the
Pilkington modem. The only protocol to be dealt with here is V.35 and the purchase of
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an additional modem is not required. This option offers the simplest design at a minimum

cost.

Another problem arises due to the fact that CCITT V.35 is a short range protocol
and is not intended for signal transmissions over medium to long distances. The 50-
75 foot distance from the VAX computer to the available work areas makes the use of
V.35 impractical. To overcome this difficulty, an intermediate protocol, with transmission
capabilities to cover the 50-75 foot distance between computers can be used but this

requires another device to make the conversion.

The search for a means to convert the data from V.35 to a suitable protocol produced
only one device capable of the required 1.344 Mbps rate over the 75ft distance-a CCITT
V.35 to RS-422 converter. (RS-422 is capable of transmitting up to 2Mbps over 60 meter
cables (25:77).) This type of converter makes it possible to receive the data messages in

room 116 over an RS-422 cable at the required data transmission speeds.

The final hurdle in establishing the transparent link is the conversion from RS-422
to Ethernet. This problem, however, does not lend itself to the use of a simple converter
because of an anticipated need to save the RFMDS messages onto non-volatile storage
media. In addition, preliminary examination of over 30,000 data blocks from a single
Red Flag mission revealed that approximately 30 percent of the space in the blocks was
unused. A significant reduction in the amount of data transmitted to the DTC can be
achieved if the device used to convert from RS-422 to Ethernet can be programmed to
filter out the unused data from the data blocks. These two factors dictate the use of a

computer/workstation to perform the conversion, storage and filtering.

The final hardware design for the computer communications component is shown
in Figure 16. It illustrates the use of a ‘T’ junction between the Pilkington modem and
the VAX computer. Data messages in the V.35 protocol are routed to a computer for

conversion to Ethernet and retransmission to the DTC.,

3.1.8 Software Methods. The tasks to be accomplished by the conversion program

involve reading the data from port four, parsing the blocks into individual messages and
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transmitting them onto a network as Ethernet packets. A simplified algorithm written in

a “C"-like computer language best illustrates how these tasks can be accomplished.

while (Data available at the V.35 port)

{
Search for start of message bytes (0x7f 0x7f 0x7f);
Read data block into buffer;

/* Parse the data block until ‘‘end of data’’ =/
while (message type not equal to ‘Oxff?’)
{
Get next message;
Add Ethernet header information;
if (message length > max Ethernet packet length)
{
Segment message into allowable packets;
}
Dutput message to Ethernet port or
Archive message to disk;
} /* end inner while =/
} /* end outer while */
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The design of this algorithm causes each message type to be transmitted as an inde-
pendent unit rather than dividing the data block into maximum sized Ethernet packets.
This necessitates the transmission of more packets, yet it also simplifies the processing of
messages by the DTC because the messages have already been extracted from the block and
can be used immediately upon receipt without reconstruction and parsing. This algorithm
also eliminates the transmission of unused bytes in the block because parsing ceases once
the “end of block” message type is seen. The high speed at which the DTC must operate

to perform the data translations creates the need to reduce the amount of processing.

8.2 Data Transiation

The principle objectives of the data translation component are to receive RFMDS
messages containing the aircraft telemetry from the CCC and translate them into the
formats prescribed by the DIS standard. This may involve something as simple as copying
the data from the Red Flag message buffer into the DIS PDU buffer; or it may involve
a series of complex computations. The final objective is to broadcast the DIS PDUs
using a best effort, multicast communication service. (Broadcasting messages to a group
of network stations instead of a single site is called multicast communications (25:144).)
During the presentation of this section a number of issues are raised which are particular
to the simulation of high performance aircraft yet have no current resolution within the
DIS standard. Insights gained during the design phase of the DTC may benefit others who

are attempting to incorporate telemetry from live aircraft into a DIS environment.

3.2.1 Data Translation Anclysis. In order for the RFMDS messages to be trans-
lated from their native frame of reference to the DIS frame of reference there are three
basic ideas which must first be understood concerning the fixed formats of RFMDS and
DIS.

1. The difference between the floating point pumber formats of RFMDS and DIS;

2. The difference between aircraft orientations in the REMDS and DIS frames of refer-

ence;
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3. The frequency of RFMDS aircraft updates for high/low activity aircraft and weapon

simulations;

This subsection addresses each of these issues in turn. It should be noted however, that
while the RFMDS message formats have been in place for a number of years now, the DIS
formats do not enjoy the same stability. Changes to the DIS standard are constantly being
proposed. Thus, issues raised here as unresolvable may be fully resolved and incorporated

into some future version of the standard.

3.2.1.1 Floating Point Representation. Floating point numbers in the
RFMDS messages use a different format than the JEEE 754-1985 floating point standard
prescribed in the DIS (23:76) standard. Whereas the JEEE standard describes a 23 bit
fraction, 8 bit exponent and a sign bit (26:570), the RFMDS floating point format uses a
24 bit fraction, 7 bit exponent and a sign bit. This nonuniformity between formats requires
that each floating point number in the RFMDS message buffer be converted to the IEEE
754 standard format before being placed within the DIS PDU. In addition, the floating
point conversions must be accomplished prior to the use of these numbers in any calcula-
tions within the DTC because the hardware and software within the SGI computers uses
the IEEE standard. Conversions between the two floating point formats add a significant

computational cost to the translation.

To get an idea of the computational cost to perform these conversions, assume that
there are 36 high activity aircraft whose position is being updated. For each of the 36
aircraft there are approximately 10 maneuver data messages that are broadcast each sec-
ond. In every maneuver data message, each of the 36 aircraft has 9 floating point numbers
representing its location, orientation and velocity that must be converted. This requires
that 3240 floating point conversions be completed each second. Algorithms designed to
perform theee computations use approximately 588 CPU cycles per conversion (15). This
brings the total number of CPU cycles/per second (IRIS 4D/440 VGXT) which must be
dedicated solely to the floating point conversions to 1,905,120.
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3.2.1.2 Asrcraft Orientation/Location.  The cost of performing translations
between the RFMDS and DIS frames of reference for an aircraft’s orientation/location in
a non-standard DIS “flat earth” environment is largely absorbed into the floating point
calculations. (In a “fat earth” environment, the curvature of the earth is ignored.) If
however, the DIS standard is strictly adhered to and the WGS84 geocentric coordinate
reference system is used, then an additional significant cost is incurred in translating and
rotating the location and orientation of each aircraft into the geocentric coordinates. (More

information on coordinate conversions can be found in Erichsen (4).)

3.2.1.8 RFMDS Updates.  As indicated earlier, the RFMDS provides posi-
tion updates for each of the high activity participants at approximately 10 hertz.

This 10 hertz time differential between RFMDS blocks cannot, however, be taken
as absolute. In one sample of 1,000 consecutive blocks of RFMDS data, roughly 97% of
the message blocks were transmitted within .1 & .02 seconds. The remaining 3% however
were well outside the 10 hertz interval. Figure 17 shows an impulse plot for each of the
1,000 time intervals sampled. Note that the occurrence of time intervals outside of the
specified 10 hertz update rate is not regular and thus not suitable for use as an absolute
time increment. These irregularities suggest that dead reckoning algorithms use the time
differential computed between successive RFMDS message blocks rather than some fixed
time interval approach designed to minimize delta time calculations. Likewise, an approach
that uses a real-time clock to compute time differentials for dead reckoning purposes will

be in error roughly 3% of the time and cause erratic position updates.

Updates for low activity aircraft are sent at irregular intervals and generally exceed
the 12 second maximum time interval between DIS entity state PDUs. On some occasions,
update intervals between low activity aircraft have been as long as 25 seconds. This causes
a problem in the DIS world because entities which are not updated within 12 seconds are
to be deleted from the simulation (23:25). This should not be allowed during the replay
of 2 Red Flag mission due to the distractions caused when low activity aircraft constantly

disappear then reappear when they are deleted and reinserted into the exercise.
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Because one of the RDT’s objectives is to provide a debriefing tool that can be used
to portray the activities of a given Red Flag mission, it is important that the images
displayed by the RDT represent the mission as accurately as possible. In the case of low
activity aircraft where position updates occur less frequently, a decision must be made
whether or not to perform dead reckoning. If dead reckoning is performed for the low
activity aircraft then the position of the aircraft at time t follon ag a position update is
questionable. Consider a low activity aircraft whose position has just been updated via
an entity state PDU. It begins a standard rate turn, but because another update for this
aircraft ;na.y not come for as much as 25 seconds, it will appear on the RDT displays to
continue in a straight line for 25 seconds and then abruptly move to its new position as

shown in Figure 18.

If dead reckoning is not performed, another problem occurs. Consider the case where
that same aircraft begins a turn and dead reckoning is not used. The RDT image will show
only the last update without further aircraft movement. Upon receipt of the next position

update 25 seconds later, the new position is displayed. Figure 19 accurately portrays a
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Figure 18. Low Activity Aircraft Positions with Dead Reckoning

history of actual aircraft movements, in contrast to misleading flight paths of low activity
aircraft that have been dead reckoned.

Simulated weapons employed during a Red Flag exercise also have state vector in-
formation transmitted at the same rate of approximatly 10 hertz. One entire processing
unit of the CCS is dedicated to simulating weapon trajectories and results for up to a
maximum of 50 weapons. These updates are calculated and packed into a REFMDS mes-
sage block during each 100 msec cycle that weapons are active. Unfortunately, however,
only 2 coordinate location is generated. Weapon velocities and orientations are not part
of the weapous data message and must be computed in order to provide sufficient data for
both the dead reckoning algorithms and the placement of that information into the fire,
detonation and entity state PDUs,

The last item that should be mentioned relates to the total number of position
updates that can be expected during a typical Red Flag mission. Data collected during a
44 minute and 39 second mission flown on 15 July, 1993 contained approximately 800,300
position updates. This data includes the full flight path histories of more than 40 aircraft
and numerous missile shots. If these updates were to be broadcast as entity state PDUs,

this would require, on average, the transmission of roughly 283 PDUs every second for the
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Figure 19. Low Activity Aircraft Positions without Dead Reckoning

duration of the mission if dead reckoning was not performed and this would be a significant

load on an Ethernet local area network (LAN).

3.2.2 Design Approaches. Although there are many ways to construct an al-
gorithm which performs the data translations from RFMDS to DIS, a straight-forward
approach, which acrepts data from the RFMDS and then translates it sequentially into
DIS PDUs, is described in the next subsection. The principle issues addressed in this sub-
section relate to the mapping of the information contained in the RFMDS data messages
to the appropriate fields within each of the DIS PDU record types. Examination of the
data within the REMDS messages suggests that the information can be grouped into the

following general categories:

1. Available in RFMDS telemetry messages and directly transferrable to DIS PDUs.

2. Available in RFMDS telemetry messages but not transferrable to DIS PDUs (Data
can be reconstructed from information within the PDU)

3. Available in RFMDS telemetry messages but not transferrable to DIS PDUs (Data

can not be reconstructed from information within the PDU)

4. Required in DIS PDUs but not available in RFMDS telemetry messages
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Data that is available in RFMDS telemetry messages and directly transferrable to
DIS PDUs includes such items as: location, orientation, and linear velocity. Although
each of these items may need to be converted to standardized formats, the information is

available and can be converted in a straight-forward manner.

Angle of attack and rate of climb must be reconstructed from information placed in
the DIS PDUs that is extracted from RFMDS telemetry messages. Both of these items
cau be calculated from the aircraft’s velocity and orientation vectors and would be an

unnecessary additior to information already contained within the DIS PDUs.

Examples of data that can not be reconstructed from information in the DIS PDUs
but is available in RFMDS telemetry messages includes the following: true airspeed, in-
dicated airspeed, mach number, crab angle, angle of side shp, weapons status, current
selected weapon, radar azimuth/elevation, infrared tone frequency, and infrared seeker
azimuth/elevation. Some of this information, for example indicated airspeed and mach
number, is related to the density and temperature of the atmosphere. Atmospheric data is
not currently available in the DIS protocol; and thus this information is not available to DIS
applications. It might be argued that the data in this category need not be transmitted to
other simulators, yet one of the purposes of the RDT is to provide as much of this type of
information to aircrews as possible so that accurate assessments of their performance can
be made. It is often the case that the radar or infrared seeker azimuth/elevation depicted
on the aircraft’s head-up display (HUD)in the RFMDS cockpit view is used to identify
which aircraft is being targeted at the time of a missile launch. DIS protocols make no
provision for this type of information. Even if this data were to be contained within the
DIS PDU, it could not be used reliably because dead reckoning suppresses broadcast of
the majority of the PDUs and generation of new entity state PDUs is not dependent on
this dynamic data.

Examples from the final category include DIS specific items which are unrelated to
the RFMDS messages. Some of these items include: version, exercise ID, time stamp,
site, host, appearance, and dead reckoning parameters. Most of this data can be easily

generated for inclusion into the PDUs, however, linear and angular accelerations .re not
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found in any of the RFMDS data messages. If included, these accelerations must be

calculated and stored in the PDU.

Information that falls into category 1 can be simply converted and put into the DIS
PDUs. A discussion about possible options for completing this task would be pointless.
Information in category 2 does not require placement into DIS PDUs and therefore requires
no epecial procedure to make a conversion. Most of the data in category 4 can easily be
generated and a discussion about waye to create and store this data in the PDUs would

also prove of little value.

The task of translation of the RFMDS telemetry messages in category 3 into DIS
PDUs can be solved a couple of interesting ways. One approach is to place as much of the
data as possible into unused or pad fields of currently defined PDUs. This allows the data
to be broadcast, but deviates from the established protocols. This approach also has the
advantage of retaining the defined sizes of the DIS PDUs without causing an increase in
network bandwidth. These deviations may require considerable redesign and effort if the
formats of the PDUs change and the unused/pad fields, previously ignored by standard

DIS applications, are now used.

A second approach calls for the cieation of RFMDS-specific PDUs. These PDUs
would be ignored by other applications but would be intercepted and used by the RDT.
Although this approach preserves the formats defined within the DIS standard, it also
generates a number of questions. First, how often does this information need to be trans-
mitted? In other words, if dead reckoning suppresses broadcast of the majority of the
PDUs, should these special PDUs with time sensitive, dynamic cata be suppressed also?
What effect will a significant number of non-standard PDUs have on the network band-
width? Will sufficient bandwidth still be available if the scale cf the exercises increase?

These questions bear serious consideration and warrant further research.

3.2.8 Design Resolution.  Now that the significant issues and options have been
explained, this subsection presents the final functional design used to implement the DTC
and the rationale behind these design decisions. In a manner similar to the description of

the CCC design, a “C"-like language is used to characterize the algorithm which translates
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RFMDS messages into DI PDUs. Next, the decision to perform dead reckoning calcu-
lations for only the high activity aircraft and weapons is explained. The final portion of
this section details the mappings of data from the RFMDS message formats into the DIS
PDUs.

3.2.8.1 Software Methods. = The tasks necessary to translate the RFMDS
message formats into DIS PDUs are very straight forward and include retrieving a message
and then performing the appropriate activity based upon the message type. This process

can best be illustrated by the following algorithm.

while (RFMDS Lessages are available)
{

Read message into buffer;

/* Handle each message type individually */
swivwch(message type)
{
case TIME:
set range time;
break;

case HIGH ACTIVITY MANEUVER DATA:
for each sircraft
{
perform dead reckoning calculations;
if (send this PDU == TRUE)
Fill & send Entity State PDU;
} /% end for */
break;

case LOW ACTIVITY DaTA:
for each aircraft
{
Fill & send Entity State PDU;
} /* end for =/
break;

case HIGH ACTIVITY ~ARTICIPANT DATA:
case LOW ACTIVITY PARTICIPANT DATA:
fcr each aircraft

{
Replace old participant data
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with new data;
} /* end for »/
break;

case WEAPONS:
for each weapon
{
if this is a fire event
Fill & send Fire PDU;
else
if this is a detonation event
Fill & send Detonation PDU;
else
{
perform dead reckoning
calcuiations;
if (send this PDU == TRUE)
Fill & send Entity State PDU;
} /¥ end if =/
} /% end for =/
break;
} /* end switch */
} /* end while */

3.2.3.2 Weapons and High Activity Aircraft Dead Reckoning.  Evident in the

preceding algorithm is the design decision to perform dead reckoning calculations for only
the weapons and high activity aircraft. The reason behind the decision not to dead reckon
the low activity aircraft primarily rests with the concern to present an accurate depiction
of tte low activity aircraft flight paths rather than continuous, potentially inaccurate,

movements. This is not a concern for the kigh activity aircraft and weapons because of

their frequent position updates.

It should also be noted that the time interval used in the dead reckoning calculations

is computed from the time between successive RFMDS range time messages and not a
real-time clock in the DTC. This ensures that the time interval corresponds to the actual

time interval in the RFMDS data and guarantees that delays due to operating system

activities will not be introduced by using the system clock.
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3.2.3.3 Data Mappings. Perhaps the simplest format for describing the Snal
design for mapping RFMDS data into DIS PDUs is a set of figures which graphically depict
where data found in the RFMDS messages is placed into the DIS PDUs. Accordingly, the
next several figures represent each of the RFMDS message types that are used in the DTC
and the mapping of their information into the entity state, fire and detonation PDUs.
Figure 20 shews how entity state PDUs are generated for high activity aircraft from the
high activity participant and maneuver data messages. Figure 21 displays the mapping of
data for low activity aircraft from the low activity participant/data messages. Figures 22,
23 and 24 depict the mapping of RFMDS weapons data messages into fire, entity state
and detonation PDUs.

Highlighted in the figures are the fields in the DIS PDUs that are not used or are filled
with constant data. Unused fields in the PDU are due to the fact that the RDT represents
a basic system, limited in scope, that was developed as a “proof of concept” and not a
full-scale commerci il product. Thus some of the information that could be transferred to
the DIS PDUs and used in the image generation software, such as articulated parts fields,

is not currently used, but is available for future implementations.

Fields in the DIS PDUs that ave depicted with the double box represent compromises
to the DIS standard. Information placed within these fields reside in pad fields or unused
areas. RFMDS time stored in the first 4 bytes of a 15 byte unused field within the dead
reckoning parameters is a good example of how RDT modifies some of the DIS PDUs to
provide a capability that is not available in DIS. The Zulu, or Greenwich Mean Tire,
depicted by RFMDS on all of its displays is a critical component for aircrews when they
debrief their missions. The times of key events, such as missile shots, are recorded by the
pilots as they fly. Later during the mission debrief, these events are compared with the
time correlated displays of the RFMDS and used to confirm shots/kills. The DIS time
stamp in the PDU Leader only allows for an indication of the time passed since the current
hour (23:86). This would cause some ambiguities on Red Flag missions which extend
over several hours because events occurring during one hour of the exercise can not be
distinguished between events happening in other hours. A zulu time stamp resolves all of

these ambiguities and is therefore placed within the PDU.
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Close examination of Figure 20 reveals that a significant amount of information about
the aircraft flight parameters is available but not transferred to any of the fields in the
DIS PDUs. The design of the DTC as it currently stands does not provide a means for
this information to be transferred to the IVC. Future modifications to the DTC and IVC
might develop a non-standard PDU specifically to transfer such data between components

of the RDT.

3.8 Summary

Now that the CCC and the DTC designs have been presented, it is easy to see how
these components can be referred to as the preprocessor components of the IVC. Blocks
of data containing RFMDS messages are transferred from the RFMDS to the CCC using
the V.35 protocol. The CCC parses the data block into individual RFMDS messages and
transmits the messages, using the Ethernet protocol, to the DTC. The DTC parses each of
the RFMDS messages and constructs DIS PDUs that are then broadcast onto a simulation
network. The IVC described next, is located at one of the nodes on the simulation network
and is capable of interpreting the DIS PDUs and rendering images which represent the
activities described by -he data.
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IV. User Interface and Visualization Design

The organization of this chapter deviates somewhat from that of the previous chapter
because of the numerous ways a user interface and visualization component (IVC) could
be designed. It would be impractical, if not impossible, to identify and address every
conceivable option that could be considered for the design of the IVC. Therefore, the
approach taken in this chapter is to identify and describe the design methodology as it
was used to create the interface portion of the IVC and then illustrate how the ObjectSim

framework was adapted to meet RDT visualization needs.

4.1 User Interface Design

Foley et al. (5:391) define the key goals in user-interface design as:

1. Decrease time required to learn how to use the interface to perform a given set of

tasks;
2. Decrease time required to perform the tasks with the interface;
3. Reduce the number of errors;
4. Encourage rapid recall of how to use the interface;
5. Increase attractiveness to potential users.

These goals form the foundation for the design of the IVC. A credible debriefing tool
should be easy to learn and allow a user to quickly display crucial mission elements with
minimal effort. A minimum effort implies, among other things, that little time is wasted
correcting errors. Because opportunities to use the debriefing tool might be far apart, the

procedure to perform tasks with the interface should be easily remembered.

In order to create an interface that achieves these goals, a methodology outlined by
Foley (5:429) was used. This methodology encompasses the following steps.

1. Determine what the interface is meant to accomphsh by learning what tasks are

currently being performed and how they are completed.
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2. Work through the conceptual, functional, sequencing and binding design levels to

prepare a top-down design for the interface.

3. Use an interactive process of rapid prototyping and user testing to create a version

of the interface with the desired functionality.

Each of Foley’s design levels, conceptual, functional, sequence and binding, (5:394-
395) are duplicated here for convenience. TLe conceptual design defines the principle
application concepts that must be mastered by the user. The functional design, also called
the semantic design, specifies functionality or meanings, but not the sequence of actions or
the devices with which they are conducted. Sequence design defines the ordering of inputs
and outputs and is also called the syntactic design. The binding design specifies how
hardware devices/primitives are used to generate inputs and produce the desired outputs.
The input primitives are the set of input devices that are available, including any of the
following items: mouse, spaceball, keyboard, data glove, polhemus sensor, etc. Output
primitives are the shapes, (such as lines and characters) and their attributes (color, font)
provided by the graphics subroutine package. The presentation for this section is organized
according to the three activities outlined in the methodology: interface definition, top-down
design, and interactive prototyping.

4.1.1 Interface Definition. Mastering air-to-air combat tactics and maneuvers
is one of the most challenging tasks facing aircrews in today’s Air Force. The difficulty
of the challenge is compounded by the very nature of air-to-air combat. No two missions
are exactly the same and the lessons learned against adversaries on one mission may not
be applicable to the adversaries, envirormental conditions and scenarios encountered on
other missions. Financial resources, once available, are dwindling and the high cost of
generating sorties to learn and practice combat skills results in fewer sorties for individual
aircrews. Each sortie represents an invaluable step towards achieving proficiency in the
combat arena. It is said that “a picture is worth a thousand words™ and in the air-to-
air arena it is equally true for it is the image or set of images about a past engagement
that are remembered long after the hours of discussion and verbal contention about what

really happened during a mission have passed. Systems or tools which can graphically
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reconstruct the events of a sortie magnify the impact of any successes or failures because
these graphic depictions can readily be cross-referenced mentally to the actual images seen
during the flig! *. Thus one of the tasks of any debriefing tool must include an accurate

portrayal of the mission environment from any point of view, especially that of the pilot.

Other tasks identified over the ccurse of this thesis project are a result of discussions
with analysts and test pilots from the 57TG as well as personal observations of mission
debriefs that were conducted using the RFMDS. Enumerating these tasks will create 2
baseline functional description of the RFMDS capabilities that need to be mirrored in the
final design of the IVC. The following list identifies many of the tasks that are currently
being conducted at Red Flag. Each task description is accompanied with the method or
procedure used by RFMDS to complete the task. {Note: This list is far from exhaustive
in terms of the full capabilities of the RFMDS but does encompass the limited scope of
the thesis project.)

1. Simultaneously present centroid, cockpit or plan views, and exercise/flight parameter
data to the user. This is accomplished with three separate monitors at the DDS

console.

2. Provide the capability to examine any area of interest from an overhead point of view
by manipulating the plan view so that it can be enlarged /reduced and/or panned to
any location on the range. Panning is accomplished by moving the joystick control
in the desired direction. Twisting the zoom knob on top of the joystick enlarges the
cuwrrent scale by up to two times (22:4-12 - 4-16).

3. Focus the view area of interest upon a subset of high-activity aircraft and/or threats
and allow the view orientation angles to be modified (Azimuth # 180°and elevation
0 - 90°). Azimuth and elevation angles are modified via thumbwheels. Aircraft are

selected by pressing the desired aircraft’s select button (22:4-26 - 4-31).

4. Present a pilot view showing all high-activity aircraft and threats. Allow this view
to be manipulated to show orientations from 12, 3, 6, and 9 o’clock. The view is
selected via the PILOT VIEW button on the DDS console. A series of four buttons is

used to select the desired view orientation (22:4-32 - 4-35).
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10.

11.

12.

13.

14.

. Show a view from one of several ground-threat positions. This view is selected by

pressing the THREAT BORESIGHT button and a threat select button (22:4-88).

. Display the mission information about participants, mission role, call sign. Press-

ing the EXER DATA button on the console selects one of several screens containing

information about high-activity, low-activity and threat participants (22:4-40 ~ 4-44).

Show dynamic flight data for each aircraft to include mach number, true airspeed,
indicated airspeed, angle of attack, pitch, roll, heading, etc. (22:4-44 —4-45) Select

this view by pressing the PILOT DATA button.

. Provide system/flight parameter display useful for technical evaiuation. Some of

these parameters include normal acceleration, mach number, angle of attack, position
components, velocity components, tracking filter status and others. This view is

sclected by pressing the ENGR DATA button (22:4-45 - 4-47).

Present a chronological list of significant mission events to include simulated weapon
firings and detonations along with the results. The list should also include the bear-
ing, range and closing velocity from the weapon to the target. Scan vertically through
this list of events by using scroll bar buttons on the DDS console (22:4-52 — 4-53).
Allow aircraft-aircraft pairing. This provides the display of slant range, bearing,
closing velocity, altitude difference, angle off the tail (aspect angle), and antenna
train angle. The display should be capable of pairing up to eight aircraft and is
selected by pressing the FLIGRT DATA, A/C A/C, AND Row/CoL buttons (22:4-
70).

Show infrared (IR) and radar missile-lock indications (22:4-72). Software controlled.

Display representations of the radar and IR missile seeker angles on the pilot view
with square and diamond icons. This symbology is available by selecting ACM mode
when in the pilot view (22:4-76).

Monitor aircraft communications on up to eight channels. Enable the desired audio

channel] via buttons and volume control knobs on the DDS console (22:4-114).

Depict a history of the aircraft’s flight path by showing flight path trails on the views.

This is selected via the HISTORY TRAIL button on the console.
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The following additional tasks were also identified as desirable but are not part of
the RFMDS capabilities.

1. Provide a view into the scene from a position afi .¢ an aircraft along its velocity vec-
tor. This corresponds to a wingman’s view from a trail position. Allow manipulation

of the view orientation in any direction.

2. Show an aircraft’s bearing and range from a known geographic reference point. This
point, known as a bullseye point, is used by weapons controllers as a standard ground

reference for describing aircraft locations to multiple dispersed flights.

3. Detach from a wingman'’s view and “fly” through the scene to achieve a view from
any conceivable positior or “chase” mission participants through their maneuvers as

a “phantom” wingman.

These lists represent a significant subset of the tasks necessary to completely analyze
an air-to-air exercise and present a cohesive picture of all of the aircraft activities during

a mission.

4.1.2 Top-Down Design.  The designs necessary to achieve the capabilities de-
scribed above include conceptual, functional, sequence, and binding. The following sub-
sections detail the composition of each of these levels.

4.1.2.1 Conceptual Design. The initial design strategy of the RDT was
not to create a totally new system requiring extensive periods of retraining in the way a
debriefing might be analyzed with a new tool, but rather to mimic the familiar ways of
the RFMDS as much as possible and then make new methods available which can extend

current capabilities. Achieving this goal requires the consideration of three main factors.

1. The RDT is to be implemented on a workstation with a single monitor unlike the
RFMDS DDS console with its three monitors that can simultaneously present three
different views into the mission. Thus monitor “real estate”, or the amount of screen
space available for the various views, is the driving factor in the overall design for

the TVC. The need to display simultaneous views suggests the use of a windowing
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technology and 2 window manager to manage the sizing and placement of views on
the workstation. Multiple views displayed simultaneously on the workstation implies
that the size of the individual windows must be small enough so that one window
does not cover up the contents of another. Small windows, however, obscure details
that might otherwise be visible in a larger window and thus suggest an additional
’ feature that would allow « window to be expanded up to the full screen size of the

\ monitor.

2. Custom hardware contro} devices such as the thumbwheels, joysticks, aad large but-
ton arrays of the DDS console work well with the DDS but are not readily available
and would require a sigrificant effort to manufacture and interface into the SGI
computer hardware and software. New controis for manipulating the views and
data should be simple to use, without sacrin.ing controllability; and they should
not require an inordinant amount of tiLie to m: ke the transition from one system
to another. These factors suggest the use of common computer interface devices,
such as the mous= or keyboard, to provide the needed viewing control functions and

operating system interface.

3. The IVC viewing controls should allow the tasks listed in the preceding subsection
to be completed at least as easily and quickly as the controls of the RFMDS and
still provide a measure of extendibility. (Easy, in this context, is defined as requiring
minimum aumbers of controls to perform a single task, as well as a minimum amouvnt
o1 memorization as to the locztion and fiunction of each button, knob, dial, etc.) This
criterion suggests the need to keep a simple sct of powerful controls contained within
a small area so that time is not wasted due to large hand inovements which might be
neces:  to control either the devices themsel 2: or the views. These controls should
also provide a consistent appearance and respons: so that errors are minimized and

the appiication of one control device is easily transferrable to other tasks.

Figure 25 represents the RDT conceptual interface design derived from the major consid-

erations identified 2bove and frem tue list of tasks specified eailier.
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Figure 25. RDT Conceptual Design
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The monitor screen space is partitioned into four equal areas or windows. The top t-..
areas are set aside for the plan, or overhead, view and one of three possible 3D-views. The
3D views are the centroid view, the cockpit or pilot view, and the tether view. The centroid
view focuses the viewing volume upon up to four aircraft and automatically repositions
the view volume to keep these centroid aircraft in sight at all times. The tether view, or
the wingman’s view, shows a display from a trail position behind any of the aircraft as

they manauver through the environment. The cockpit view is self-explanatory.

The lower left-hand area is reserved for displays requiring the presentation of textual
data and is referred to as the data display arca. The data displays are the flight data, =p-
gineering data, exercise data and summary data. The flight data display shows the values
of some of the aircraft flight parameters available to a pilot. The engineering display pro-
vides technical information regarding aircraft position in the RFMDS coordinate reference
frame. The exercise data presents a list of all of the aircraft which have been active on the
range, their identitiec, and their roles. The summary data display provides a chronological

list of all of the weapon events received during the mission.

The lower right-hand area is used exclusively to control each of the views and data
displays through a mouse driven graphical user interface (GUI). This area is referred to
as the control area. Use of the mouse and GUIs to directly manipulate control objects
minimizes the need to memorize numerous keyboard sequences and provides familiar visual
representations which can easily be assimilated. Some objects on the control panel also
create other mini-control panels that are overlaid onto the data display -rea and removed

when no longer needed.

Each of the graphics windows (3D views or plan view) in the top areas can be
expanded to fill the full width of the monitor or enlarged to fill the full screen. While a
view is enlarged to fill the full screen, the control panel window is hidden. Manipulation of
the views is restored by bringing the control panel back into view and operatic - :he control
objects. The mini-contro] panels available are the help panel, centroid panel, attributes
panel and the event logging panel. The help panel provides information regarding the
manipulation of control panel objects. The centroid panel specifies which aircraft arce to be

centered within the centroid view. The attributes pane) allows aircraft attributes, such as
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color and length of flight path history trails, to be modified wkile the event logging panel

identifies the filename to be used as an archive for the weapon events.

The combination of the plan and 3D views, data displays, and the control panels com-
prise the RDT user interface and work in concert to achieve each of the tasks identified
earlier. As with all things, there are a few exceptions to this statement. Audio communi-
cations cannot be monitored by the RDT at tkis time. This capability was identified as
outside the scope of this thesis. Display representations of the radar and IR seeker an-
gles have likewise been postponed pending resolution of design and implementation issues.
The procedures or sequences of steps needed to pcrform each of the listed tasks within the
framework of the RDT user interface design are identified in the next section as part of

the functional/sequence design of the RDT.

4.1.2.2 Functional and Sequence Design.  In keeping with the design phi-
losophy stated in the previous section, mimicking old ways, the functions of each of the
controls of the DDS console were used as a template for developing the user interface.
Each knob, button, dial, and jeystick of the DDS console was examined and categorized
according to its function and context in which it was used. GUI objects were selected which
emulated the functionality of the DD'S controls. This does not mean, however, that the
GUI objects are identical in shape, size or location to the DDS controls. As an example, a
thumbwheel on the DDS conscle is used to rotate the centroid view about a vertical axis;
a slider designed into the RDT performs an identical function although the appearance is

somewhat different.

The functional design specifies the meanings behind a series of actions; whereas
the sequence design defines the ordering of the actions. This section strays from a pure
portrayal of either design and instead combines the action sequences into a series of state
transition diagrams reflecting control panel object manipulations. In nearly all cases,
the user interface merely sets/resets information that the application uses to control the
visualization. Separate functional definition diagrams would be of little value and are not
provided. The format used to illusc.ate the diagrams generally follows the format defined

by Rumbaugh (17:84-112) for his dynamic model notation.
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One concept not readily apparent by looking at the state transition diagrams is the
ability of the IVC to exist in multiple states concurrently. This property is called shared
control and is used in some user interface management systems in which subroutines are
executed in response to user inputs. (This concept is described more precisely later in the
discussion about rapid prototyping.) As long as a GUI object is capable of “recognizing”
an input, its subroutine will be called. In the RDT design, any sequence of buttons may be
pushed as long as a button remains “active.” An active button, or GUI object, responds
to manipulation and causes a state transition. An inactive GUI object cannot respond to
manipulation and therefore cannot cause transitions to intermediate states. As an example
of this shared control, a user can change the current view type while he is in the process of
modifying the flight data control information. By activating/deactivating buttons, a path
through a set of intermediate states can be set up which completes a complex activity.
Any beginning state which establishes a complex activity is called a “complex state,” or
“command state.” The IVC can be transitioning through several states at the same time
as long as buttons remain active on the control panel. A line with arrowheads on both
ends signifies a transition to a “command state” and a concurrent return to the “neutral
state.” The dynamic model for the entire interface portion of the IVC is shown in Figure
26. The initialization state is not shown. Shaded boxes indicate “command states” which

are dizgrammed in figures contained in Appendix A.

4.1.2.8 Binding Design. The binding design deterriines how input and
output units of meaning are formed from hardware primitives (5:395). In the case of the
RDT this translates to the selection of specific input devices and to the output primitives
necessary to create the scenes displayed on the monitor. The primary focus of this sub-
section is on the input devices chosen for the RDT. The output primitives, namely fonts,
lines, line width, polygons, colors, and textures are largely determined by the geometry of
the models used to represent the terrain and aircraft flying in a Red Flag exercise. The
Performer software described earlier is responsible for rendering the geometry, therefore

no further hardware output binding design is given.
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A number of input devices were considered for incorporation into the RDT but only
three were selected for the first implementation. The following list identifies the devices
which were considered and the reason that each was either adopted or disregarded. (While
reviewing the list it is important to remember that the purpose of the RDT is to prove the
feasibility of implementing a tool for remote debriefing that uses the DIS protocol and not
to specifically conduct research regarding the optimum set of input devices. The task is
to create a set of suitable devices that make control of the visualization censistent, quick,

easy, and error free.)

1. Keyboard - This device is included with every workstation and forms the backbone
for communicating with the processors. Using any of the keyboard keys to control
events within the interface allows rapid switching of control parameters. Familiarity

and availability of the keyboard make the keyboard a must for RDT.

2. Mouse - This input device is included as part of the RDT for basically the same
reasons as listed for the keyboard. A mouse is included with each workstation and is
a familiar input device. It is one of several direct manipulation devices that permits
smooth hand motion to translate into smooth cursor positioning. Precise positioning
is more natural and easier to accomplish on direct manipulation devices than on
discrete devices, such as keyboards {5:351). In the world of “windows” and “window
managers” a mouse lends itself well to the manipulation of GUI objects because of
the preponderance of software written which utilizes the mouse for accomplishing

selection and positioning activities.

3. Voice Recognition System ~ A voice recognition system would provide an excellent
hands-off view manipulation device; however, work with a voice recognition system
at AFIT confirmas the experience of others regarding voice recognizers, namely that
there are significant limitations. Some of these limitations include: the need to
recalibrate the recognizer for each new user (variations in the voice wave patterns,
such as occurs with a cold, also require recalibration), a limited vocabulary, and the
requirement to pause between words to signal that the end of a word has occurred

(5:355).
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Delays encountered recalibrating the device for each new user could make the overall
system seem unattractive in an environment where new users change frequently and
time management is critical. Adoption of a voice recognizer into the RDT must wait

until hese limitations can be overcome.

4. Joystick - The joystick is another direct manipulation device which could be used as
part of the interface. They are readily available and easy to use; however, they are
generally limited to movement with only two degrees of freedom and are awkward if

movements other than pitch ar.d roll are desired (i.e. a twist.)

5. Spaceball - A third direct manipulation device considered for the RDT is the space-
ball. Like the joystick, precise positioning is difficult yet the design of the spaceball
often includes an arm support which allows the fine motor control muscles of the
hands and wrists to be used. Unlike the joystick, the spaceball allows movement over
six degrees of freedom and greatly enhances the ability to control view orientation

angles in any direction.

6. Other ~ Other high technology devices such as the data glove and Polhemus tracker
were considered impractical because of time delays involved with calibrating and
donning/doffing the devices, the level of effort required to implement the interface,
and the scope of the thesis project. Future modifications to the RDT might reconsider

using alternate input devices.

The final design of the IVC calls for a keyboard, mouse and spaceball as the standard set

of input devices.

4.1.9 Interactive Prototyping.  The final step in the design methodology outlined
in this chapter dictates that an interactive process of rapid prototyping and user testing be
used to parrow down the final interface design. This subsection highlights the character-
istics of a user-interface management system (UIMS) that was used to develop the initial
prototype, and presents the final designs chosen for the GUI objects as a result of iterative
design techniques.
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4.1.8.1 User-Interface Manag:ment System — Forms.  The development of
the initial prototype was created by using a UIMS called Forms. A UIMS is a software tool
which can assist in defining not only the form of an interface, but also admissible action
sequences. Some UIMSs also provide an interactive design medivm through which all of the
attributes of a GUI can be defined, for example size, color, location, and input response.
Another characteristic of a UIMS that makes it attractive as a tool for developing interface
prototypes is the concept of shared control. An application built on top of a UIMS is typ-
ically written as a set of subroutines, called semantic action routines, which are called in
response to user inputs. The UIMS is responsible for calling the appropriate semantic ac-
tion subroutine to complete the desired task. (This is the "call-back” paradigm mentioned
earlier.) In return, these action routines influence the set of acceptable action sequences

available within the application and dialog control is shared between the application and

the UIMS(5:457).

The Forms UIMS was developed as a library of subroutines that can be used to build
up interactive forms of buttons, sliders, input fields, dials, etc. in a simple way for Silicon
Graphics workstations. It was written by Mark H. Overmars at Utrecht University, the
Netherlands, to overcome the problems of high cost, limited capabilities, and difficulty
in using other UIMSs, and Forms is available in the public domain. His design goal was
to create a tool that was simple to use, powerful, graphically good looking, and easily
extendable (13:i). The Forms UIMS uses the shared control concept described previously
and relieves a programmer of the burden of mapping device inputs to appropriate action

routines.

The Forms library also includes a design tool which facilitates the construction of
forms by interactively allowing GUI objects to be placed, scaled, and moved in a simple
way. Dbject attributes, such as color, labels and fonts, can be changed easily (13:35). This
tool, called the Form Designer, was the primary development tool used to construct the
interface prototype of the IVC. The design process used to create the interface prototype

proceeded in the following manner.
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1. A color scheme was chosen to provide a pleasing appearance and consistent mapping
between colors and activities associated with them. Because color interactions can be
a complex issue, a known, commercially proven, color scheme was chosen to minimize
development time and benefit from previous research. The RDT reproduces the colors

of the Turner color scheme used by Silicon Graphics in the Case Vision software.

2. The Form Designer was used to create the various interface forms dictated by the
conceptual design and containing all of the required GUI objacts. These objects were
grouped according to functional tasks, and action sequences were defined in terms
of “call back” subroutines. Forms “call back” subroutines are procedures that are
invoked in response to a Forms event, like pushing one of the buttons or moving one

of the sliders.

3. “Call back” subroutines were written and then integrated with the Formssubroutines

into a prototype interface.

4. The interface was tested by personnel of the 57TG and by former RFMDS console
operators to ensure consistency, speed of use, and correct sequence of actions. Errors
which were discovered were subjected to a subsequent iteration through the Form

Designer and/or revision of the “call back” routines as required.

Although this design process began well before any of the visualization software was
implemented, it continued throughout the entire thesis project. As new methods and
features were added to the IVC, successive repetitions through the prototyping process
were conducted until a suitable interface was developed which met the overall interface

design goals identified at the beginning of this chapter.

4.1.3.2  Final Interface Design. The following sets of figures contain the
final interface forms created with the Forms Designer. They are reproduced here to show
the format and content of the final design. The color scheme can be observed by referencing
Appendix E. The illustrations are presented according to functional groupings with the
master control panel pictured first in Figure 27. Each of the Forms Designer created
forms, now called panels cr windows, corresponds to tasks which are available from either

the “neutral state” or one of the other “command states.” The master control panel
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Figure 27. Master Control Panel

corresponds to activities available from the “neutral state.” The centroid panel in Figure
28 corresponds to the view management command state. Tasks available in the data
view /pair command states are activated via GUI manipulations on the data view or pair
panels depicted in Figures 29, 30, 31, 32, and 33. The help panel shown in Figure 34
coincides with the help command state. The panel in Figure 35 is used in the refne
command state while the panel in Figure 36 is used in the attributes command state. The
last panel presented in the series is actually the first panel to be displayed upor IVC start
up Figure 37 is used to set the initial view and view modifier configurations of the IVC.

The following section describes how the user interface is incorporated into the ObjectSim

framework to form the complete IVC.

4.2 Visuahzation

The visualization software contained witun the RDT is principally built around the
ObzectSrm framework: developed by Snyder (20) Aircraft and terrain geometry models are

rendered by SGI hardware and Performer software th »ugh the ObjectSim interface. The
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design of the IVC uses the principles of inheritance to derive subclasses of the ObjectSim
class structure. These modifications to the basic framework allow the RDT application to
be tailored to the specific needs of the Red Flag environment. This section briefly describes
the ObjectSim class structure and then shows how RDT specific classes are incorporated
into the overall design of ObjectSim. The section concludes by describing the design con-
siderations needed to integrate the RDT user-interface with this ObjectSim application.

4.2.1 ObjectSim Framework.  ObjectSim was designed as a set of reusable com-
punents in a C++ class library to provide a high-level wrapper around the Performer
library and its programming paradigm, namely a wide interface into an image generation
data structure. It is intended to be a standard interface that encapsulates the common
functionalities of DIS simulations into readily-available, high-level services. Visual simu-
lations, in their simplest form, consist of a basic set of classes: application, model, and
renderer. The application propagates one or more dynamic models through the scene while
the renderer displays the corresponding geometry depicting the simulation. The ObjectSim
framework builds upon these simple concepts and creates a set of classes which not only
perform these simplistic activities, but also provide built-in functionality for managing ter-
rain, attaching views, and interfacing with various input devices such as helmet mounted

displays or spaceballs.

Figure 38 is a high-level representation of the ObjectSim framework. Rumbaugh
object model notation (17:21- 57) is used to convey the relationships between classes.
The Simulation class contains zero to many Player objects, a Renderer object, a Terrain
object, multiple View objects and zero-to-many Flt_Model objects. The Simulation class
is responsible for multi-player tasks such as propagatiag players, switching views, and
attaching views to players. The Player class is used as a repository of state and attribute
information about specific entities participating in a simulation. In addition, the instances
of the Player class, known as View players, may also be associated with a view and perform
their own draw functions using SGI graphics language (GL) subroutines. The Terrain
class encapsulates the movement of the terrain into a near-transparent operation so that

either round or flat earth operations can be performed with minimal effort. (In ObjectSim
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terrain is moved under a view player instead of moving the view player over fixed terrain.
This is done to minimize floating point precision inaccuracies which occur as a result of
player movement located at some far distance from the terrain origin. Keeping the view
player fixed at the origin and moving the terrain relative to the player ensures sufficient
precisicn to express the exact location and guarantees that no visual artifacts, such as jitter,
appear.) A "'iew object is associated with the Renderer and images drawn by Renderer are
assigned tc a View. View modifiers dyramically allow devices such as spaceballs or helmet
mounted displays (HMDs) to change the view orientation parameters for total control of
the viewpoint and view orientation. The Flt_Model class represents the geometry of active

entities in the simulation.

4.2.2 RDT Modifications. Tailoring of the ObjectSim framework is accomplished
by deriving subclasses fror the basic class structure and overriding methods to perform
new tasks. The IVC design for the RDT requires modification of the Simulation, Player,
and View classes. Pigure 39 shov.s the RDT derived classes along with a set of new classes

needed to complete the full design of the IVC.

The RDT Application is a Simulation which has been modified to perform additional
initializations specific to the RFMDS environment such as loading translation tables which
map RFMDS aircraft types into DIS entity types. The RDT View is a View with additional
methods that allow it to attach the rendering to one of the view players. The ObjectSim
Player is used as the base class for two new RDT players, the RDT Player and the RDT
View Player. The RDT View Player has additional methods which perform GL drawing
into the scene. The RDT Player contains attribute information thar is not part of the base
Player class. Using the methods in the RDT View Player, the identity of the active RDT

Players can be shown in the form of a number or their specific call sign.

A set of new classes is needed to interface the ObjectSim framework to the comnmu-
nications network where the DIS PDU information is being received and interpreted. The
Object Manager, developed by Sheasby (18), is the bridge to the distiibuted simulation
netwok. Methods accessible to the IVC allow network information to be incorporated into

the simulation. The RDT Net Manager is responsible for polling the Object Manager for
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Figure 39. RDT Modifications 1o ObjectSim
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current network information and then propagating each of the RDT Players through the
scene based upon either new or dead reckoned coordinates. The RDT Event Manager also
polls the Object Manager and accepts a hst of current events which have been received
since the last update. The events are stored semi-permanently in an Event Queue and are
used to trigger animation sequences in the scene such as weapon detonations. The RDT
Model Manager contains methods to determine the location of the appropriate geometry

files that are needed to associate with an RDT Player.

4.2.8 User Interface Integration.  The integration of the user interface with the
RDT Application is designed such that all interaction with the RDT Application is done
through a common control data structure. Changes to desired view parameters are stored
in the shared structure by the user interface. These changed parameters are then read and
interpreted by the Application and used to adjust the simulation views as requested. This
shared control structure design makes it possible to completely change the form of the user
interface without affecting the code or operation of the RDT Application. In reality, the
user interface is more than just a single class. It encompasses all of the Forms semantic
action subroutines into a Controller class as well as general utilities that are needed as
part of the initialization of the interface. Because the Forms software is generated in the
“C” lauguage, the user interface is also the bridge between the “C++” RDT Application
software and these “C” subroutines. Figure 40 illustrates the communication between
the two activities or processes through the shared control structure. The format of the

illustration uses the notation of the Rumbaugh functional model (17:123-144).

This completes the description of the IVC design in particular and the overall RDT
design in general. Chapter V discusses the implementation of these designs into the “C-++"

and “C” languages on Silicon Graphics workstations.
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V. Implementation

Implementation is the translation of the design into a target language for a target
machine. This chapter presents the details of the implementation process for each of the
three major components defined earlier: CCC, DTC, and IVC. The organization of this
chapter follows accordingly.

5.1 Computer Communications Component

The CCC is a combination of several serial devices and a single software program,
called Convert, which perform a single high-level function-conversion and retransmission
of RFMDS message blocks from the V.35 protocol into Ethernet. This section is divided

into two subsections which describe the CCC’s hardware and software elements.

5.1.1 Hardware. The final design of the CCC in section 3.1.2 identified the need
for a “T™ junction, a V.35 to RS-422 protocol converter, and a computer workstation. The
actual hardware used to implement the “T” junction consists of two additional V.35 to

RS-422 protocol converters.

Figure 41 portrays the full implementation of the CCC. Data arriving from the Pilk-
ington fiber modem on the VAX computer side of the connection enters the first protocol
converter where it is converted to RS-422. An A/B switch box is used to form the actual
“T" and channels RS-422 data to the remaining two protocol converters. The converter,
which is “in line” with the VAX link, restores the original V.35 signal for use by the VAX
while the remaining converter is colocated with the computer workstation some distance
away. RS-422 facilitates the data transmission over this moderate distance. This last
converter reconstructs the V.35 signals from the RS-422 and makes them available to the

computer workstation.

One of the early obstacles of the project was the lack of detailed information about
the specific hardware protocols used by the RFMDS. The construction of an “active T"
with three V.35 to RS-422 converters was a short term solution adapted to an an unknown
environment. Future implementations may chose to limit the number of serial devices in

the data pipeline by eliminating the third converter and performing the conversion in the
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workstation from RS-422 to Ethernet as depicted in Figure 16. This modification reduces
the risk of a device failure shutting down the entire pipeline by reducing the number of

devices.

The selection of a computer workstation to convert V.35 to Ethernet was driven by
the availability of suitable protocol converters and the desire to keep cost at a minimum.
A communications board (ACB5) compatible with PC/XT/AT computers was located
which could receive the V.35 data on one of two high-speed synchronous/asynchronous
ports. This board is based upon the Inte] 82530, AMD or Zilog 8530 serial communica-
tions controller chip. The specifications for the board limit support of the data rate to
1Megabit (Mb)/sec (8:4). This rate is insufficient for the 1.344Mb/sec data of the RFMDS;
however, the Intel 82530 is rated at 1.5Mb/sec. To boost the data rate of the ACB5 board,
the existing clock crystal was replaced with a 6MHz crystal. A 33MHz AT&T, 80386 com-
patible computer, available at AFIT , houses both the ACBS5 board and a Western Digital
Ethernet card. This combination of devices provides the following required capabilities for

the CCC listed below.
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1. Convert V.35 to Ethernet
2. Filter out unused data from the message blocks

3. Provide disk storage for mission data.

5.1.2 Software. The Convert program is the only software part of the CCC.
Convert, written in the “C” language by Bruce Clay, a software engineer on staff at AFIT,

incorporates an ACBS device interface that was adapted from a low-level interface template

provided with the ACBS board.

Clarksen packet drivers from the public domain are used for the Ethernet network
interface. A UDP/IP point-to-point protocol was chosen over TCP /IP because of uncertain
timing requirements. It could not be readily determined whether the CCC workstation
could use the TCP/IP protocol with its error checking and device acknowledgements and
still maintain the high data rates of the RFMDS. (Data errors encountered during TCP /IP
communications require that the data be retransmitted. ) Numerous retransmissions could
slow the CCC and cause incoming data from the RFMDS to be lost. Rather than design
the CCC to guarantee that all packets arrive intact at the DTC, selection of the UDP/IP

protocol optimized the transmision speed of the CCC.

The algorithm specified in section 3.1.3 provides the level of detail necessary to
understand the implementation of Convert. The only detail of the implementation which
needs to be emnphasized is the difference between the message blocks sent from the RFMDS
to the CCC and the individual RFMDS messages retransmitted by the CCC. A message
blocks consists of one or more different, individual messages. Typically a message block
contains the range time message first and then is followed by a maneuver data message,
low activity data message, range status message and others as required or until the block
is filled to capacity. The CCC parses the message block into the individual messages and
sends each as a single logical Ethernet packet. Several modes are available as command
line switches which allow data to be read from the V.35 port or from a file. An option is
available to transmite data out the Ethernet port or save it to disk. See Appendix B for

specific details about available command line options.
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5.2 Data Translation Component

Unlike the previous component which consisted primarily of hardware devices, the
DTC is principally software which relies on the hardware network interfaces to perform its
task. The responsibility of the DTC is to accept individual RFMDS messages, translate
the data from the RFMDS message formats into DIS PDUs, and transmit the PDUs onto a
simulation network. The means whereby hardware and software were combined to complete
these tasks are presented in the following subsections. The final subsection introduces the
modificiations made to the Entity State and Detonation PDUs that are not in compliance
with the existing DIS v2.0.3 draft standard.

5.2.1 Hardware. The target machine for the DTC was a Silicon Graphics work-
station. The decision to use the SGI was based primarily upon the availability of SGI
workstations in the AFIT graphics lab and familiarity with the SGI software suite and not
on any hard requirement for a top-of-the-line graphics engine. Given the availability of a
compatible Ethernet interface and a high- speed processor, any workstation could theo-
retically perform the translation task of the DTC. Section 6.1.4 discusses the performance
issues relative to the use of single processor versus multi-processor machine for running
the DTC software. Future hardware implementations of the DTC should examine the
feasibility of running the CCC and DTC software on a single multi-processor workstation.
This could further reduce the number of serial devices in the pipeline and decrease the risk

of pipeline failure.

Additional hardware required to complete the DTC consists of a Delni fan-out box
for Ethernet connections, two fiber-to-ether modems, and fiber optic/Ethernet cables. Fig-
ure 42 shows the addition of the DTC equipment to the CCC devices. The fiber-to-ether
modems and fiber optic cable is used only to demonstrate the capability to transfer the
data across high-speed communication lines, such as might be done on a commercial T-1
line used in wide area networks. Local use of the DTC only requires that Ethernet cables

be connected from the Delni fan-out box to the IVC workstation.
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5.2.2 Software.  The software for the DTC ~onsists of two major components, a
network daemon capable of broadcasting DIS PDUs and the Readred translation program.
The daemon is the sole network interface for Readred and is described by Sheasby (18:47-
57). (The daemon description (18) actually refers to an earlier version used with SIMNET.
This daemon was modified to use the DIS protocol in subsequent versions and is currently
undocumented. Some concepts of the SIMNET version still apply.) The algorithm design
given in section 3.2.3.1 for the DTC provides sufficient detail to understand the structure
of Readred with three notable exceptions-external control, internal data structures, and

orientation determination for weapons.

5.2.2.1 Ezternal Control. Readred was originally written to allow a sep-
arate process to control the operation of the program through UNIX sockets. A socket
is a special UNIX file type that allows client and server processes to pass data back and
forth (24:28,261).

The motiviation for establishing an external interface to Readred was to allow a
sepcrate user interface to control Readred’s operating modes (read from file, read from
network), transmission speeds (start, stop, .5x, 1x, 2x, ...x times normal speed), and data
filtering capabilities (trauslate info for all aircraft, or translate only a subset of aircraft.)
The user-interface and Readred would together form a software element capable of replaying
Red Flag missions from saved data files for aircrew analysis. Code exists within Readred to
initialize the sockets and perform the communication, but this feature has not been fully

implemented.

5.2.2.2 Internal Data Structures. Readred’s internal data structures consist
of fixed length buffers and arrays. These structures promote simplicity and speed in a
stable RFMDS environment. Early software profile analysis of Readred revealed that more
than 38% of the CPU cycles used during the translation of 1,000 blocks of data were
spent performing floating poin. conversions between the RFMDS floating point format
and the JEEE format. Further examination uncovered the fact that several of the floating
point data fields from the RFMDS message buffers were accessed multiple times during

the PDU generation process. This required expensive floating point conversions to be
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performed several times for = single data item. The solution to the problem was to create
an intermediate data structure, or table of objects, in which all of the floating point data
could be converted once and then made available for other subroutines as necessary. This
data structure was also used for storing identification information and previous position

and velocity values for dead reckoning calculations.

Figure 43 illustrates the configuration of the arrays and buffers. Data received in
the RFMDS message buffer is parsed and copied to the object table. The object table
is a fixed length array with reserved elements. Elements 1 - 99 are held for high activity
aircraft. (Growth potential is available since only 36 aircraft can be tracked as high activitiy
aircraft at once.) Elements 100-199 are designated for low-activity aircraft. Weapons data

is reserved for elements 200-249.

The RFMDS aircraft number is the key for storing aircraft data in the object table.
For instance, data for high-activity aircraft number 36 is stored in object table element 36
and data for low-activity aircraft number 105 is stored in the object table at elemeunt 105.
High-ac:ivity aircraft can only be differentiated from low-activity aircraft by their aircraft
number, which equates to an RFMDS slot number. The logical player number, a unique

number in the range of 1-255 that is assigned to each aircraft for an entire mission, does
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not distinguish between aircraft types. (Types must be discernable in order to correctly
construct the DIS PDU.) All maneuver data messages use the aircraft number and not
the logical player number as the key. In order to reduce constant mapping of the aircraft
number to a logical player number and to keep a consistent interface for users familiar with
the RFMDS numbering scheme, the aircraft number was retained as the key for referencing
any aircraft. An additional detail that should be kept in mind when thinking about key
values and the object table is the way in which RFMDS swaps high activity and low-activity
participants. As a flight of high activity participants completes its mission and begins to
depart the range, the slots used by an equal number of low and high-activity participants
are swapped. This swapping permits all aircraft carrying AIS pods to potentially become
high activity participants and have data recorded for their part of the mission. These ‘slot
swaps’ are immediately preceeded by the transmission of new participant data messages.
Consequently, the aircraft identities are updated in the object table prior to any reference

to the new aircraft numbers and each participant’s data is correctly stored.

Weapons are also considered to be objects and the their data is likewise stored in
the object table. The key value is the weapon simulation slot nur.ber that ranges in value
from 1 to 50. Using this number as the key value is a bit more complicated than with
the aircraft numbers because RFMDS reuses weapon simulation slot numbers frequently.
The RFMDS can only perform 50 simultaneous weapon simulations. Each weapon that is
fired acquires the first avaialble RFMDS weapon slot. This slot number is unique among
the 50 simulations but does not uniquely identify a single weapon over the entire length of
the mission. For example the first weapon, an SA-2 missile, launched at an aircraft would
occupy slot 1 in the RFMDS weapons data message. A weapon launched while the SA-2
is still active, would occupy slot 2. After the SA-2 detonates, slot 1 is made available and
the nexy weapon to be launched would immediately reuse slot 1. The key used for weapons
is 200 + the slot number. In order to uniquely indentify a weapon for the entire exercise
a master weapon identification number is assigned by Readred to each new weapon upon
receipt of a fire signal. This master weapon ID number is stored in the object table and
used as the weapon’s entity number in the DIS PDU. Master weapon numbers are in the

range of 256 to 400. These beginning and ending values are tied to the player numbers in
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Figure 44. Heading and Pitch Determinations from Velocity

the IVC. Weapon numbers are reused if 400 is exceeded. A large range in the weapon ID
number makes it extremely unlikely that two weapons with the same weapon ID number

will be active at the same time.

5.2.2.3 Orientation Determination for Weapons. RFMDS weapon simula-
tion data contains only the location of the weapon and is void of any orientation informa-
tion. It is possible to compute a weapon’s heading and pitch from two sequential position

updates. The components of the velocity vector V are determined by:

_ (m—=0)

= @)
- (11— w)

W= (t: — 1) 5)
_ (m-x)

= (ti— 1) (6)

Figure 44 shows an arbitrary velocity vector in a right handed coordinate system.

The projection of V onto the z,y plane forms the projection vector P. The angle 1 between
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the z axis and P corresponds to the rotation of P around the z axis beginning from the
z-axis.
Vv
¥ = arctan (-17:) (N
The angle ¢ is in the range of £180° and must now be adjusted to represent the
weapon heading in the range of 0 — 360°. Headings correspond to clockwise rotations

about the z axis beginning from the y axis. A common correction factor can be applied

for all quadrants except Quadrant II, which requires a unique correction.

90—y Quadraents I, III, IV
450 ~ ¢ Quadrant I

The angle 6 formed between the projection vector P and the velocity vector V
corresponds to a rotatior about the z axis and represents a weapon’s pitch in the range of

+90°. No corrections are needed and € can be used directly.
|IVI|)
6 = arctan (—— 8
P ®

5.2.8 Entity State and Detonation PDU Modifications.  Subsection 3.2.3.3 identi-
fies a number of fields in the Entity State and Detonation PDUs that are defined as padding
or unused fields in the v2.0.3 draft standard but which are used by RDT. The need for a
Zulu time stamp has already been addressed; however, three other issues remain: replay

speed, capabilities, and the reason behind a hit or miss for a weapon simulation.

5.2.8.1 Dead Reckoning Record Modification. A companion issue to the
need for a Zulu time stamp is the requirement for a replay capability using the DIS PDUs.
Replay of an exercise is not addressed in the DIS standard but is the key activity upon
which all mission debriefs are based. Immediately upon return from a mission, flights re-
view their individual aircraft video tapes and extract key events. Each of the mission forces

(Blue Air, Red Air, and Blue Air-to Ground) then gathers and conducts a mission review
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using the RFMDS to put the pieces of the puzzle together into an accurate representation
of the unique mission activities. Aircrews use RFMDS variable replay speeds to minimize
the mission review time and to slow down complex engagements so that a complete picture
of the fight is formed. A mass debrief with all participants is the last item on the agenda.
The RFMDS is used once more to replay the mission. Variable replay speeds are used
to skip the non-essential mission elements identified in previous reviews and provide ‘stop
action’ dissection of the major battles. The RFMDS and its displays are the equivalent of

the television network’s instant replays.

An additional 4-byte floating-point data element was placed into the unused portion
of the 120-bit dead reckoning parameter fields of the Entity State PDU at byte offset 4.
This element, the replay speed, is an indicator to other applications that the current PDU is
being broadcast in a replay mode at the speed indicated. Dead reckoning procedures at the
receiving end of the DTC have to modify their algorithms to account for the replay speed
by multiplying their time increments by the replay speed in the PDU. This is necessary
because the velocities in the PDUs remain fixed. Readred sets the replay speed equal to
1.0 for live operations or normal replay, but is also capable of using a simulation-speed
parameter in its time synchronization loop. Applying dead reckoning in a replay mode

within Readred is one of many areas for further research and testing.

5.2.9.2 Capabilities Record Modification. = Weapon and range status infor-
mation is encoded within the RFMDS maneuver data message in the weapons, status

and itrace fields. Boolean weapon status bits in the maneuver data message indicate the
following (3:A-71):

1. Radar lockon

2. IR missile lockon

3. IR missile seeker uncaged

4. Aircraft dead

In a traditional DIS exercise, a detonation PDU is broadcast by the weapon entity’s sim-

ulation application. It is the responsibility of the target entity’s simulation application
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Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
MSB LSB
Filter Filter Laser On IR Aircraft | No Slot IR Radar
Predict | Unreliable - Uncage | Dead Locken | Lockon

Table 5. Weapon and Status Byte

to determine the extent of the damage caused by the detonation and report any damage
in the appearance field of the Entity State PDU. The roles of both applications in the
RDT environment are satisfied by the RFMDS. The aircraft dead bit is used to signal a
successful weapon engagement and 1s therefore placed into the Entity State PDU so that
the IVC can render an appropriate image. The radar and IR bits are passed to the IVC

but are not currently used to modify the rendering of aircraft images.

Filters used to smooth raw data from the AIS pods and also detect anomalies in TIS
tracking report the quality of the telemetry information in two ways. First, a set of status
bits is used to indicate the operating mode of the filters (normal or prediction) and the
reliability of the filtered data. Second, itrace status codes show conditions of filter internal

operation.

These codes ndicate a range of operations including: tracking aided by radar al-
timeter, downlink data consistency failure, uplink data faili e, aircraft off range, and
many others (3:A-73). Any abnormal aircraft movements depicted by the IVC can be
cross-checked against the integrity of the data being transmitted for the aircraft. This is
a valuable feature often used to answer questions about apparent misorientation. Table 5

shows how the weapons and status bits are composited into a single status byte.

While the force ID field of the Entity State PDU contains an 8-bit e-;umerated value
that can be used to associate a unique color for each of the defined forces, the DIS v2.0.3
draft standard does not define & field which identifies the role of an entity, such as defensive
counter-air, interdiction, air refueling, stand-off jamming, etc. Aircraft role information is
encoded in the RFMDS displays with unique colors. In this manner, aircraft performing
the same rcle can be readily ideatified because they appear with the same color. The

following roles are encoded into the RDT capabilities record:
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1. AAR - Air to Air Refueling
2. ABCCC - Airborne Communication Command and Control
3. ADF - Air Defense
4. AWAC - Airborne Warning and Control
5. BAI - Battlefield Air Interdiction
6. CAP - Close Air Patrol
7. CAS - Close Air Support
8. CIJ - Close In Jamming
9. CMJ - Communications Jamming
10. DCS - Defensive Counter Air
11. ECM - Electronic Counter Measures
12. HELO - Helicoptor Operations
13. INTR - Interdiction
14. NUC - Nuclear
15. OCA - Offensive Counter Air
16. REC - Reconnasance
17. FAM - Familiarization
18. SAR - Search and Rescue
19. SEAD - Suppression of Enemy Air Defenses
20. SOJ - Standoff Jamming

Table 6 depicts the content and format of the 4-byte RDT capabilities record that
replaces the DIS 32-bit boolean capabilites record.
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Byte3 | Byte2 | Bytel | Byte0
MSB LSB
Itrace | Weapon/ | Mission | Unused

Status Role
Byte .

Table 6. RDT Capabilities Record (4 Bytes)

5.2.8.8 Detonation PDU Modification. The Detonation PDU defined in
the draft standard uses an 8-bit enumated type to describe the results of a detonation
but fails to provide a field that can be used to identify the reason a particular weapon
engagement failed. While this data may not be available in the DIS world, it is transmited
in the weapons data messages of the RFMDS simulations. To aid the user in shot analysis,
the miss reason is passed on to the IVC in the detonation PDU. The 16-bit padding field
following the number of articulated parameters at the end of the PDU is filled with the

miss reason.

5.8 Interface and Visualization Component

Now that the hardware configuration has been fully described up to the point of con-
necting the IVC machine to the network, it is time to illustrate this connection in terms
of the overall implementation and also show how data flows through the different software
components. Subsection 5.3.1 contains the two figures that tie all of the components to-
gether into a complete system. .1 order to provide needed background information for
the class method discussions in subsection 5.3.3, additional information is presented in
subsection 5.3.2 which highlights Performer’s multi-processor and shared memory require-
ments. Subsection 5.3.4 addresses specific problems and solutions used within the IVC to
provide more realistic images. The final subsection illustrates the results of the design and

implementation efforts with a set of photos from a typical RDT session.

5.8.1 RDT Hardware and Software Overview.  Figure 45 illustrates the complete
RDT system. A comparison with Figure 42 from section 5.2.1 reveals that a single SGI
workstation is added as the platform for the IVC software. The IVC platform requires a
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top-of-the-line graphics engine in order to produce images representing the dynamic aircraft
activities of a Red Flag mission at a rate that provides smooth aircraft movements. (The

desired update rate was 15 frames per second for Z-buffered, flat-shaded polygons.)

Figure 46 provides a similar overview of the RDT but from a software/data-flow
viewpoint. From an abstract level of observation, the data flow can be viewed as a pipeline.
The live RFMDS data flows into the pipeline at the top of the diagram and flows out the
bottom of the pipe into the IVC component for image generation. Removing the layer
of abstraction uncovers the interplay betweea data and the software components. Live
RFMDS data is received by the Convert program at the top of the figure. The data is
converted to Ethernet packets and transmitted to the Readred program for translation to
DIS. Readred uses the AFIT DIS daemon to broadcast the DIS PDUs onto a distributed
simulation network. RDTy,,, the IVC component, uses the AFIT DIS daemon to monitor
the network and retrieve DIS PDUs for processing by the Object manager. The Object
Manager supplies player position updates and weapon events to RDTy;, from the object

manager.

The flow of data throvgh the pipeline is somewhat different if a mission is to be
replayed from a data storage device, such as a tape or disk. A magnetic tape containing
the RFMDS message blocks captured by the VAX computer can be converted to a disk
file using resources at AFIT. (A single 47 minute Red Flag mission uses approximately
180 Megabytes of storage.) The raw data file can then be used directly by the Convert

program.

Readred on the other hand expects individual RFMDS messages and cannot directly
process the raw data file. During live broadcast, the Convert program extracts only the
individual RFMDS messages from the blocks and discards the unused data. This same
preprocessing step must be done with the raw data file before Readred can interpret the

data correctly. There are two ways to produce this preprocessed file:

1. Use Convert to store the extracted messages to disk
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2. Use the Xfilter program to process a raw data file and produce the required filtered
message file. (See Appendix D for details concerning the operation of the Xfilter
program.)

Either method creates a data file suitable for use by Readred. The data-fiow is identical

once the Readred program begins translation.

5.8.2 Performer Shared Memory and Multi-Processing.  Visual simulations which
use the SGI Performer software have a “built-in” capability to access multiple processors,

if they are available on the machine, because of the way in which Performer partitions
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the functional stages of its graphics pipeline. The three stages of the graphics pipeline
are the APP, or application stage, the CULL and the DRAW stages. In the APP stage,
the simulation application interacts with other networked stations and propagates the
positions and orientations of its models through the scene. The CULL stage traverses the
visual database of models and determines which polygons are visible in the current view
volume. Selection of appropriate models for level-of-detail switching also occurs in the
CULL stage. The DRAW stage issues the graphics library commands to the geometry
pipeline in order to produce the image on the display (11:7-13). The work performed
in each of these stages can be distributed between up to three processors. Using three
processors, each allocated to one of the functional stages of the graphics pipeline, provides

the maximum throughput for rendering model geometries.

When Performeroperates in the multi-processor mode, each pipeline stage is allotted
a full frame period to perform its work, and it takes two additional frame periods for a
model movement computed in the APP stage to be reflected in the final image produced
by the DRAW stage. This condition is generally not noticeable unless the application
performs its own draw functions in the APP stage onto geometry drawn by Performerin
the DRAW stage. Rapid position changes of the models can highlight this frame latsacy
and cause unwanted distractions. For example, assume that the application desires to draw
a tail number on an aircraft model in the APP stage. As long as the model position does
not change rapidly from frame to frame, the tail number will appear at the desired location
on the model being drawn in the DRAW stage. However, if the position changes rapidly
from one frame to the next, the tail number may be drawn well ahead of the aircraft. By
keeping a history of the location data for three consecutive frames and using the values
that the DRAW stage will use, the latency problem can be overcome. This technique has

not been incorporated into the current version of the IVC.

Process “callbacks” allow applications to insert their own custom culling and draw
functions into the rendering pipeline. RDTy;, uses the post-draw “callbacks” to draw the
aircraft numbers, flight path trails, and the cockpit HUD into the scene after Performer

has drawn the scene geometry.
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Data needed in multiple stages of the pipeline must reside in shared memory in order
to be visible to the other processes. For example, an aircraft’s position that is updated
in the APP stage running on one processor is also needed in the DRAW stage on anotber
processor so that flight path trails can be drawn. Forms “callbacks” from the user-interface
are made during the DRAW stage. Information which these “callbacks” process to control
the views of the IVC is stored in shared memory so that the APP stage of the application
can have access to the data and modify the view parameters accordingly. Shared memory
and process visibility to common data are crucial concepts in the multi-processor RDTy,,

environment.

5.8.8 Class Method Descriptions. The following subsections detail RDTy,,
specifics by describing the data structures and methods invoked by the RDTy,, Net Man-
ager, Event Manager, Player and User-Interface classes. Other classes derived from the
ObjectSim framework or newly created for RDTy,, have straight forward methods and in-
terfaces anc do not require additional explanations beyond those given in sections 4.2.1
and 4.2.2. (In the following descriptions the term “entity” is synonomous with a DIS entity

and “player” is the term used for an entity in the RDTy,, environment.)

5.8.8.1 Net Manager. The Net Manager class is the primary interface
between RDTy,,, the Object Manager, and the simulation network. The Object Manager
is a separate process which operates concurrently with RDTy,,. The init method is used
to spawn the Object Manager process. Once created, the Object Manager continuously

reads PDUs from the networl, archives entity data, and dead reckons entity positions.

while (TRUE)

{

update entity information from the network;

dead reckon each active entity;
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During the Object Manager’s update procedure the daemons are polled to determine
if new PDUs have arrived. If new PDUs are available, the data is incorporated into the
Object Manager’s class structures and arrays. The dead reckoning procedure determines
the time differential between the current time and the previous dead reckoning call and
applies the dead reckoning algorithms to each of the active entity’s coordinates. Orientation

dead reckoning is not implemented.

The Net Manager interrupts this continuous update/dead reckon cycle during each
rendering frame with the update method. The update method receives from the Object
Manager the number of active players and their identities and passes to the Object Man-
ager the location of the RDTy,, player array. The Object Manager places the new PDU

information for each entity directly into its corresponding player.

A formal protocol between the Object Manager and Net Manager defines how entities
become active players in RDTy;,. The Object Manager changes a player’s state from
“deactive” to “inserted” the first time that an Entity State PDU is received for that player.
The Net Manager changes the player state from “inserted” to “active” and inserts a new
mode! of the required type into the scene at the new player’s coordinates. Thereafter, each
update from the Object Manager changes the player’s coordinates as a result of either dead
reckoning or a PDU update.

Player coordinates, orientation and velocities received from the Object Manager con-
form to the DIS v2.0.3 standard. The RDTy,, software, much like the RFMDS software,
was written using a simple flat-earth or tangent-plane world coordinate reference model.
A set of utility programs written by Erichsen (4) changes the DIS round-earth coordinates,
orientation, and velocities into the flat-earth frame of reference used by RDTy,, and all of
the other ObjectSim applications developed at AFIT during 1993. It is the interaction of
the Net Manager and Object Manager that propagates players through the RDT};, scene.

Active players are removed from the scene by a similar formal protocol. Once the
Object Manager determines that an entity is no longer active, the state of the correspond-
ing player is changed from “active” to “deleted.” The Net Manager then removes the

corresponding model from the scene and changes the player’s state from “deleted” to “ex-
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isted”. The “existed” state is used to differentiate a player that has never been active from

one that has been active and since been deleted.

5.3.8.2 FEvent Manager. The Event Manager has an interface with the
Object Manager similar to that of the Net Manager. The Event Manager passes to the
Object Manager the location of its event list and receives from the Object Manager the
number of new events that the Object Manager read from the network and placed into the

Event Manager’s event list.

Each event is placed into a circular queue. Events can later be retrieved in reverse
chronological order with Event Queue methods. DIS round-earth coordinates and velocities
are also converted to the flat-earth reference frame with the same set of utilities used by

the Net Manager.

Along with each fire and detonation event, the bearing, range, deltz altitude and
closing velocity between the launcher/weapon and the target are computed and stored.

The following equations define how this data is computed.

The range between the launcher/weapon located at (z,y,z) and the target located

at (Z4, Y, 2¢) is:

Range = /(z—2)7 + (4 — 9)* + (2 — 2)? (9)

The difference between the launcher/weapon altitudes and the target altitudes is

simply the difference in their z coordinates.

Delta Altitude = 2,-z (10)

The closing velocity between the launcher/weapon at the moment a weapon is fired
or detonated is computed in a three-step process. First, the line-of-sight vector, LOS,

between the two piayers is calculated and then normalized. nLOS.
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LOS: = ZT{—

LOSV = Y%y
LOS, = 2z -z
LOS.
nl0S, =
ILOS]|
_ LOS§,
nLOS, = LOS|
LOS,
nLOS, = WL—(-)-gl—'

(11)
(12)
(13)
(14)
(15)

(16)

Next, the velocity vector difference, & V, between the launcher/weapon velocity, V,

and target velocity, V*, is computed.

AV: = V:—Vg
oy, = V;-Vy
av, = Vi-V,

a7
(18)
(19)

Finally, the closure velocity, V., is the projection of A V upon nLOS and is in the

direction of LOS.

V. = nLOS.AV
= ||nLOS| |AV]} cosb
= ||AV]| cos@

(20)

The bearing from the launcher/weapon to the target is computed identically to the

procedure outlined in section 5.2.2.3.
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Figure 47. Player Class with Derivations

In the event that Fire PDUs are transmitted but not received, weapon entities become
RDTy;, players upon receipt of their Entity State PDUs and are propagated along their
flight path by the Net Manager. If no Detonation PDU is received, the weapon player will
continue to be dead reckoned until the Object Manager determines that it is no longer

active and deletes the weapon.

5.3.3.83 Player. RDTy;, players are derived from the ObjectSim player class
through multiple layers of inheritance. Two classes are defined-the RDT Player and the
RDT View Player. Figure 47 shows the derivations for each of these player classes from
the base class, Player. Both classes are Attachable Players but are distinguished from each
other by their data structures and methods.

RDT Player Class. The RDT Player is void of any methods except
those which manage the flight path history information in the player’s circular flight path
queue. The RDT player is basically a repository of state information that is used by the
ObjectSim Renderer and the User Interface displays. The RDT Player attributes are:

e RFMDS Time Stamp
e Force ID
¢ Call Sign
e Abbreviated Call Sign
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e Aircraft Type

& Velocity Vector

e Angle of Attack

e Angle of Side Slip

¢ Rate of Climb

e Crab Angle

e Mach Number

e Indicated Airspeed

e True Airspeed

e G Force

¢ Mission Role (Color)

¢ Override Color

e Radar Lock Flag

¢ IR Missile Lock Flag

e IR Missile Uncaged Flag

e Laser On Flag

& Number of Radar Missiles Fired

¢ Number of Successful Radar Shots

¢ Number of IR Missiles Fired

o Number of Successful IR Missile Shots
e Number of Gun Shots

¢ Number of Successful Gun Shots

¢ Number of Times Killed

o Flight Path History Circular Queue
e Pointer to the 3D Model

e RFMDS Data Filter Unreliable Flag
e RFMDS Data Filter Predict Mode Flag

Attributes that are derived from the base Player class and Attachable Player class
are not shown. One of these attributes, however, is 2 model pointer. Two instances of the
same model geometry are used for each RDT Player. Both models are inserted into and
removed from the scene at the same time by the Net Manager, but only one model is visible
in a view at a time. View masks are associated with each wodel so that one model is visible

only in the Plan View and the other model is visible only in the 3D View. By creating
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Element Number | Category
0 Bullseye Player
1-255 Red Flag Players
256 - 400 Red Flag Weapons
401 - 500 Network Entities

Table 7. RDT Player Array Indices

two separate models, each can be scaled independently. This allows the model rendered
in the Plan View to be one size while the model drawn in the 3D View is another size.
Model scaling is performed by the RDT View Players so that the player’s orientation and
location are always visible in the Plan and Centroid Views. This artificiality is necessary
to build a view of the overall range airspace and participants which enhances situational

awareness.

A static array of RDT Players is created during initialization. The first element of
the array, Player 0, is used for the Bullseye player. Elements 1 - 255 are reserved for Red
Flag players and elements 256 - 400 are reserved for Red Flag munition entities. Elements
401 and beyond are reserved for network players from sources other than Red Flag. Table 7
summarizes these array index assignments. This first implementation is not optimized for
dynamic scaling of the simulation such as drastically increasing the number of entities in
the simulation; however, it does provide a simple and efficient means of randomly accessing

any player received from the network.

RDT View Player Class. Four RDT View Players are defined in
RDTy,: Plan, Centroid, Cockpit, and Tether. Each RDT View Player encapsulates similar
methods, propagate and draw, which are differentiated by the way a view player’s location

is determined or the type of additional information drawn into the scene.

Plan View Player.  The Plan View Player is propagated through
the RDTy;, scene by changing the z, y, and z coordinates with the control panel interface.
The Plan View player is oriented such that the view is always in the direction of the
negative z axis, or looking down. RDT Player models are scaled so that they are always

visible.
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Figure 48. Bounding Box Determination for Centroid View

Cockpit and Tether View Players.  Both the Cockpit and Tether
View Players are indirectly propagated by the Net Manager because these players are
attached to one of the active RDT Players. The Tether View player is positicned a fixed
distance behind the RDT Player on an extension of the velocity vector. The Cockpit Player
is positioned a fixed distance forward of the RDT Player’s location. Model scaling is not
performed so that the view from the cockpit or tether=d trail position reflects reality as

much as possible.

Centroid View Player. The Centroid View Player’s position is
dependent upon the number of selected RDT Players, their locations, the view elevation,
and view heading. The default Centroid View Player position for a single RDT Player is a
fixed distance above the player looking in the direction of the negative z-axis. A multi-step
procedure is used to determine the Centroid View Player’ position and view orientation

when more thar. one RDT Player has been selected.
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First, RDTy,, determines a default overhead view position and direction by calculat-
ing & bounding box which encompasses all of the selected RDT Players (also referred to
as centroid players), and the Centroid View Player’s final position (z.,¥y.,2.). Figure 48
illustrates a bounding box containing three centroid players. The coordinates (2, ¥s, 2b),

the center of the bounding box, are defined as:

TMaz — TMin
(Z=—22) + zain (21)

(yMaz ;yMsn)+yM‘“ (22)
(Zuu - Zmn)

2

Ty

W =

2y + ZMan (23)
The maximum separation that can exist between any of the centroid players is less

than or equal to the distance between opposite corners of the bounding box. This maximum

separation distance, Dy,., can be used to determine a position above (x4, ys, 25) so that the

viewing volume contains all of the centroid players. The distance from zpre: t0 (T, Yes 2c)

is defined as Dgy.

Dr = Ratiopoy * AspectScale x (9—%‘1’-’-) (24)
, FOov
.Rat‘lOpov :Tons%WV)) (25)

Ratiopoy is a scale factor which is used increase/decrease Dy depending upon the
field of view. If a large field of view is used, say 120", Dy can be decreased so that the

view position is closer to the centroid players than if a smaller field of view, 90°, is used.

AspectScale is an additional multiplier which not only increases Dy so that the
centroid players do not appear on the very edge of the viewing volume, but also adjusts
for the rectangular aspect ratios of most monitors. AspectScale was experimentally de-
rived and varies dependent upon the largest of two ranges—zpsin 10 Zaraz OF Yaren tO YuMaz-

AspectScale is largest when the yu., to yuq. range is the greatest.
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Figure 49. Default Centroid View Player Position with Multiple RDT Players

The default Centroid View Player’s view orientation is in the direction of the negative

z-axis and the position, shown in Figure 49, is defined as:

(zc»yuzc) = (zb’yhzuu""DR) (26)

Once the default position is found, the position and view direction can be modified
to conform to the heading and elevation inputs from the user-interface cuntrol panel. A
horizontal slider on the control panel is used to select the view heading. If the slider value is
090 then the view direction should be oriented so that the Centroid View Player’s heading
is 090°, or looking East. Similarly, a vertical slider on the control panel is used to select
the view elevation. The elevation may range from 90°, overhead view, to 0°, side view, as

depicted in Figure 50.

By controlling the Centroid View Player’s elevation and heading with the control

panel inputs, (,¥.,2.) is moved over the surface of a hemisphere located at (z,,y;,2)
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Figure 50. Centroid View Player Elevation and Direction

117




with radius, Radiusgemisphere: The view direction is from (., ¥e, 2c) towards (Zs, ys, 2s)-

- ZMs
Radiusﬂemicphcn = DR + ("2"-‘22‘5‘1‘2‘) (27)
To determine z., y., and z., reference ihe top and side views of Figure 50. The
heading input from the control panel, ¥, must first be converted from a negative rotation
beginning at the positive y-axis about the z-axis to a positive rotation beginning from the
positive z-axis about the z-axis. In addition, (z.,y.) needs to be positioned such that the

final view direction corresponds to the control panel input. Let a be the desired angle.

o = 210—9 (28)

The radius, r, of the spherical segment at height z. of the modified view position is
defined as:

r = Radiusgemisphere * c08(6) (29)

where 6 is the elevation angle from the contro! panel input. (z,¥.,z.) can now be calcu-

lated.

z, = Zp+rcosa (30)
Yo = yp+rsina (31)
ze = 2zy+ Radiusg misphere Sin 0 (32)

5.8.8.4 User Interface.  Although the user interface class in the object dia-
gram of Chapter IV indicates a single class, the RDTy,, user interface is a conglomeration
of “C™ functions managed by the “C++" User Interface class. All user interface functions
required within the RDTy,, application reference this class and its methods to perform
their required tasks. Figure 51 illustrates the numerous source code files which comprise

the user interface.
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Figure 51. User Interface Software Modules
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—It_em——— JE(E Percent
Forms 7,979
Call backs 4,460
Configuration Files | 1,300
Visualization 12,298

Total _ 26,737 100 |

———— —————y

Table 8. RDT Souce Lines-of-Code Breakdown

One of the features of the RDTy},, application and its interface that distinguishes it
from other DIS stealth viewers is its ability to present low level data that can be used
for detailed mission analysis. Stealth viewers allow a user to move through a simulation
environment without interacting with any of the simulation players. Each of the graphical
views available in RDTy;, could easily be found in one form or another in a stealth viewer
application; however, the large volume of data passed from RFMDS to RDTy;, provides
a level of detail unavailable in the majority of the DIS stealth viewer applications. It is
precisely this characteristic which makes RDTy,, a viable tool for mission monitoring and
debriefing.

The user interface comprises 46.6% of the more than 26,000 lines of code in the
RDTy;, software. Table 8 illustrates the breakdown of the RDTy;, software in terms of
lines-of-code (LOC). Considering only the user interface software, 64% was automatically
generated by the Forms Designer. Only the semantic action procedures or “callbacks”
needed to be coded “by hand.” The high percentage of code that was machine generated
speaks highly of the sophistication and flexibility of the Forms Designer software and its

suitability for interface design aud implementation.

5.3.4 Image Problem Resolution. Implementation of the IVC design on the Sil-
icon Graphics machines was not a problem-free task. Early attempts to use elevation
shading with the digital terrain data resulted in a terrain image that conveyed less infor-
mation than the original RFMDS line drawings. This subsection details how a suitable

texture map was created to alleviate this problem and also identifies one of the z-buffer vi-
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Figure 52. Early Elevation Shaded Red Flag Terrain

sualization artifacts that significantly detracted from the overall presentation and describes

how this problem was resolved.

9.9.4.1 Terrain Tezture Mapping.  The photo in Figure 52 shows an early
implementation of the digitized Red Flag terrain. Each square is composed of two trian-
gles of slightly varying shades that are colored according the the elevation of the terrain
represented by the triangles. Darker colors correspond to higher terrain. It is apparent
from the cockpit view in the figure that the aircraft is approaching higher terrain, but
the exact boundary between mountain and valley is unclear and does not reflict reality.
The Plan View in the figure also shows the major features of the terrain, mountains apd
lowlands, but is void of any tangible details that truly coincide with the real terrain, Both
views are unsuitable for use in a mission monijtoring/debriefing too] where pilots navigate
using terrain features and fly low to the ground. 1t would be difficult to credibly warn a

pilot of an approaching hill or obstruction using the images depicted in the figure.
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One of the driving forces in computer graphics image generators is the number of
polygons in the scene which must be rendered. Clearly, a large numb.er of polygons requires
more time to render than a few simple polygons. The Red Flag terrain used in RDTy,,
covers an area approximately 143 nautical miles wide by 120 nautical miles high. The
number of polygons which would be needed to accurately represent this terrain would
severly limit the number of images which could be rendered in a given amount of time.
Slow frame rates translate to jerky, unresponsive simalations which only increase user

dissatisfaction.

Texture mapping techniques exist which “paste” two dimensional texture patterns
onto the polygons used in the scene. This provides a way to place a significant amount of
additional information into the scene with fewer polygons. For example, a single polygon
with a texture map taken from a detailed aeronautical chart could easily meet all of the
needs of the Plan View in RDT,,. The processing cost to render the single, texture-mapped
polygon would be minor compared to a terrain data base composed of a million polygons,
as long as the hardware was optimized for texture mapping. Silicion Graphics advertizes
the new Reality Engine? Onyx computers with the capability to draw 320 million textured,
anti-aliased pixels per second. These graphics super-computers, available at AFIT, provide
the needed image generation speed to use texture mapping techniques to reduce polygonal
complexity in the terrain data base and increase the amount of information available to a

viewer.

Compare the photo of Figure 52 with any of the photos in section 5.3.5. Clearly
visible is the marked difference between the early elevation shaded polygons and the texture
mapped polygons in the final implementation. The 12 texture mapped polygons used in
the lowest level of detail in the Plan View clearly shows sharply defined terrain features
and offers the minimum polygonal scene complexity. These improvements yield the fastest

image generation rate.

In order to create the texture maps used in RDTy;,, a high fidelty geometric model of
each of the six 1° latitude by 1° longitude cells of the Nellis ranges was created. A desert
color scheme for the mode] were chosen to correspond to ranges in elevation much the

same way that the early terrain was shaded. MultiGen software from Software Systems,
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Inc. was used to render the elevation shaded geometry. A screen capture utility was used
to generate an image of the high fidelty terrain. Evident in the image were the fine shaded
triangles of the geometric model. To remove this artificiality, the snapshot image was
blurred. The blurred image was then mapped to the polygons of the terrain to create a

view into the simulation which accurately reflects the features found on the Nellis ranges.

5.8.4.2 Image Flicker. A hardware visible-surface determination technique
called z-buffering is used in the Silicon Graphics machines to render realistic 3D images.
This techique provides a simple and efficient method for determining which polygons, or
portions thereof, are visible in a scene. A z-buffer with the same number of entries as
the frame buffer is used to store the current depth, or z coordinate value, of each pixel.
As new polygons are scan converted into the frame buffer, the depth value of each pixel
is compared to the current depth value in the z-buffer. If the value is greater than the
z-buffer value, the pixel is ignored. This situation occurs when the pixel in the current
scan-converted polygon is farther from the view point than a previous pixel. If the depth
value of the new pixel is less than the z-buffer depth value, then the new pixel must be in
front of previous pixels and the depth and color information of the new pixel replaces the

frame and z-buffer contents (5:668).

As the distance from the the viewpoint to overlapping polygons increases, the rel-
ative distance between the overlapping poiygons grows smaller and smaller. Eventually,
depth comparisons between the pixels of the overlapping polygons may be difficult, if not
impossible, to distinguish because of the fixed numerical precision of the computer hard-
ware/software. This difficulty manifests itself in the computer image as flickering. Pixels
from first one of the overlapping polygons, and then others, randomly occupy the pixel
locations in the frame buffer. In RDTy,,, aircraft which were flying near the surface of the
earth often had random parts of their geometry replaced by terrain shaded pixels making

it difficult to determine an aircraft’s orientation.

In order to resolve this problem, the z-buffering techniques were disabled during the

rendering of the Plan and Centroid Views. Although this may produce an image where
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Figure 53. Initial Configuration Options

one aircraft incorrectly obscures another in the scene, the benefits derived fromn disabling

z-buffering far outweigh a periidic error in the image.

The Cockpit and Tether views keep the z-buffering enabled so that they always depict
an acccurate scene. In these two views, the flickering problem is less pronounced because

the distance from the view point to any of the players is relatively small compared to the

extreme distances gseen in the Plan View.

5.83.5 IVC Photos. The following pages contain photos from a session with
RDTy,,. The photo sequence illustrates the major capabilities of RDT,,, and the final
form of the user interface. The next chapter presents issues related to RDT performance

and compares the capabilities of RDTy,, with those of RFMDS.
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Figure 59. Expanded Centroid View with Bullseye and Pair Data
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Figure 60. Flight Data

Figure 61. Engineering Data
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Figure 63. Summary Data




e T
v T

Figure 64. Pair Data

130




VI. RDT Performance

For each task there are numerous “yardsticks” by which the success of that task can
be measured. For RDT, the ultimate measure of its success would be the incorporation
of the software and hardware into an operational environment where it would be used as
the debriefing tool it was designed to be. Other “yardsticks,” or metrics, exist however,
which can also lend inright into how well the software could be expected to perform in
that operational world. This chapter measures RDT performance in three areas: data

translation, visualization, and user task completion.

6.1 Data Translation

In order to establish the context under which data translation performance tests
were completed, some background information is required. This section first describes the
contents of the data file that was used for Data Translation Component (DTC) evaluation
and then explores the issues of dead reckoning and speed for both single and multi-processor

machines.

6.1.1 Red Flag Mission Description.  The Red Flag exercise data used for DTC
testing was recorded during the morning mission on 15 Jul 93. A total of 53 aircraft
participated during the mission, and of that total 7 different aircraft types were represented.

The numbers and types for the mission are listed in Table 9.

Aircraft Type | Number
F-4 2
F-15 16
F-16 27
B-52 2
C-130 2
KC-135 3
E-3A 1
Total 53

Table 9. Aircraft Used in a Typical Red Flag Mission
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Not included in the table are the numbers and types of simulated weapons which
were fired at the Red Flag participants. Approximately 125 weapons entities were inserted
and removed from the exercise as a result of fire and detonation events generated by the

RFMDS CCs.

Missions flown during Red Flag exercises have many elements in common and include

the following phases:

1. Air Refueling/Marshalling - Aircraft join up with their designated tankers to top of
their fuels tanks and assemble the strike formations.

2. Push - Arrive at the start route point in the strike formation. Aircraft are armed

and ready for combat.

3. Low Level Ingress - The strike formation, or package, uses the terrain to avoid

detection by enemy air defenses.

4. Aerial engagement ~ Enemy air forces detect and engage the strike package in air-

to-air combat.

5. Air-to-Ground Weapon Employment-Strike package locates their assigned targets

and commence weapon deliveries.

6. Defensive Maneuvering-Enemy positions engage strike aircraft forcing the strikers to

perform defensive maneuvers to stay alive.
7. Low Level Egress-Individual flights of strike aircraft return to friendly territory.
8. Return to Base-Post strike refueling if required and cruise back to base.

To help visualize the maneuvering that occurs in one or more of these phases, examine
the air-combat engagement profile in Figure 65. 1his graph represents the flight path of
an F-1€ as is progressed from a patrol/search phase in Segments A,B to the commit phase
in Segment C and finally through the engagement phases of Segments D,E. Maximum

performance maneuvering most likely occurred in Segment E.

The mission flown on 15 July included all of these phases and is therefore repre-

sentative of typical Red Flag missions. The 15 July data includes not only the cruise,
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Figure 65. Air Combat Maneuvering Engagement Profile

or non-maneuvering, portions of the mission but also the air-combat and defensive ma-
neuvering which tests a pilot’s ability to maneuver his aircraft at the edge of its defined
operating envelope. This broad range of maneuvering provides an excellent source from
which assertions about the effectiveness of dead reckoning algorithms can be validated. Be-
fore exam’ning the processing cost savings achievable with dead reckoning, the following

section quantifies the information contained within the 15 July data file.

6.1.2 Data Description.  The raw data file, converted from magnetic tape, con-
taics 184 Megabytes(Mb) of information. About 30% of that file contained unused data
and was trimmed down by the XFilter program to 123Mb. The total duration of the
recorded data spans 2679 seconds, or 44 minutes and 39 seconds. The 123Mb of filtered
data contained 25,775 RFMDS message blocks which must be parsed and translated by
Readred. The breakdown by message type is shown in Table 10. The asterisked items in
the table do not reflect the number of individual RFMDS messages in the file but rather
the number of DIS PDUs that are generated as a result of parsing the contents of the

respective messages. (The maximum number of i. divia.al messages that can be contained
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| Message Block Type | Name - Number |

T Unknown 8
1 Mission Data 11
2 GCI Mission Data 10
3 Maneuver Data 788,452
4 Range Time 25,775
6 High-Activity Participant 9
7 GCI Data 25,564
8 Threat Mission Data 10
13 Range Status 25,753
15 Weapons Data *8,730
16 Bomb Data 4
18 UHF Radio Frequency 8
20 Threat Data 25,563
21 Low-Activity Aircraft Data 1,658
22 Low-Activity Participant Data 11
23 Zone Entry/Exit 154
24 Bomb Target Data 9
29 Target Status 25,754

——

Table 10. Numbers of Individual RFMDS Messages within the 15 Jul Data

within the file for any single message type may not exceed 25,775 because only 25,775

message blocks were transmitted)

6.1.3 Dead Reckoning Cost Savings. The bepefits of dead reckoning can best be
seen from the data in Table 11. This table itemizes the number of Entity State, Fire and
Detonation PDUs that ar= generated by Readred as it translated the 15 July data. The
first column shows the number of PDUs sent when the position dead reckoning threshold
is set to 1.0 meter. Column two is categorized similarly except that the dead reckoning
threshold is set to 10.0 meters. This is the normal threshold used by Readred. Column
three reports the numbers of PDUs transmitted when dead reckoning is disabled and forms
the baseline for comparing the numbers of PDUs sent with and without dead reckoning
algorithms.

The network message traffic reductions provided by the dead reckoning algorithms

of the DIS standard are dramatic! By using 2 nominal 10 meter threshold and the 5
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Type 1 meter [ 10 meter | No Dead Reckoning
Threshold | Threshold

ES PDUs Transmitted 177,277 44,919 788,452

Weapons PDUs Transmitted 6,801 1,677 8,730

ES PDUs Suppressed 613,127 753,730 0

Total PDUs 797,205 800,326 797,182
[% Traffic Reduction T 769% [ 94.2% | — 0% |
{ Ave PDUs/sec ] 68 | 17 | 297 |

Table 11. Network Traffic Reductions with Dead Reckoning

second update rule imposed by the DIS draft standard, more than 94% of the PDUs that
potentially would have been generated without the dead reckoning algorithms in place: can
be discarded. The narrower 1 meter threshold causes more PDUs to be transmitted but
still allov's 76.9% of the potential PDUs to be discarded. These findings are similar to
those reported by Harvey(7:128).

The average number of PDUs broadcast per second shown in the last row of the
table is a rough measure of the network broadcast capabilities required to transmit the
total number of PDUs over the entire exercise time period. Naturally, some mission phases
will exhibit higher PDU transmission rates than others and so the average rates in the table

may be exceeded by a considerable margin.

Figure 66 shows a comparison between the flight path of the F-16 aircraft in Segment
B described previously and the positions predicted by the dead reckoning algorithms. The
dashed line represents the dead reckoned position of the aircraft and the periodic flight
path corrections required when the time or position thresholds were exceeded. From a
distance, the difference between the two flight paths is negligible, but examination of the
Aead reckoned flight path reveals a jagged, unrealistic path that could never be flown.
Because of the periodic corrections required by the DIS standard, the dead reckoned flight
path represents a suitable approximation for most applications. More restrictive thresholds
produce closer approximations to the real flight path and fewer observable maneuvering
irregularities but also incur additional network traffic penalties. These tradeoffs must be

weighed for each DIS application.
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Figure 66. Dead Reckoning vs Actual Flight Data

6.1.4 Single vs Multi-Processor Machine.  This subsection explores the processing
capabilities of several single and multi-processor machines in the AFIT graphics lab to
translate and broadcast the data in the 15 Jul data file. The small sample sizes of the test
data gathered for Table 12 restrict the number of credible conclusions which can be drawn
about processor capabilities. This data is included only as an initial indication of relative
performance. External network traffic, operating system process context switching, and

other background processing are all factors which could not be controlied during the test

period.

Type CPU # of DR | DR | Turbo | Turbo | Turbo
(Mhz) | Processors (1) | (10) (1) (10) | (NoDR)

Indigo 33 1 N 469 | 018 [

IndigoEX 100 1 2,979 | 2,683 705 288 3,236

510/VGXT 50 1 2,985 | 3,152 815 274 3,164

440/VGXT 40 4 3,041 | 2,934 | 1,242 554 3,382

Onyx RE? 100 4 2,682 | 2,681 961 332 4,482

Table 12. Relative Processor Performance
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Columns 1,2,and 3 of Table 12 identify the SGI machines used for the test and a
few of their characteristics. The columns labeled “DR” indicate that the dead reckoning
algorithms were used during the translation process. The numbers in parentheses reflect
the dead reckoning threshold, in meters, used for a given set of test runs. The label
“Turbo” in columns 6, 7, and 8 means that the normal time synchronization mechanism
used in Readred was disabled and that the program was allowed to translate and transmit
the PDUs as fast as possible. If the dead reckoning algorithms are not used and the time
synchronization mechanism is disabled, Readred generates a PDU for all participants every
100msec. In the case of the 15 July data, this equates to almost 800,000 PDUs.

What do the test results indicate? First, single processor machines, executing the
same code as the multi-processor machines, can compete favorably with the multi-processor
machines. In turbo mode, the Indigo EX consistently out performed the multi-processor
machines and was comparable in the normal dead reckoning mode. Second, further refine-
ment of the time synchronization mechanism is required in order to bring the replay time
in line with the real elapsed time of 2679 seconds. In nearly all of the DR mode test cases,
Readred’s elapsed time exceeded the RFMDS elapsed time. Third, an uncontrolled test
environment, such as the environment in which these performance gauges were conducted,
can significantly skew results. Many entries in the table point to apparent. counter-intuitive
irregularities. For example, how can the Indigo, a 33 Mhz machine, in turbo mode at the
1m threshold process the data faster than the 100 Mhz, 4 processor, Onyx, or why would
the Onyx process data significantly slower than any of the other test machines when every
PDU is being broadcast? Further testing in a controlled test environment is necessary

before any other conclusions can be drawn.

(After the data was compiled for Table 12, a new version of the network daemons
was installed and tested at AFIT. The preliminary results indicate that the transmission
speeds can be increased by a factor of four. The 440/VGXT translated and broadcast
the 15 July data in the turbo, no-dead-reckoning mode in a time of 799 seconds. This is a
drastic improvement over the previous capabilities with the old network daemons. In the
normal time synchronization mode the completion time was comparable to other results,

2825 seconds. The turbo (10) mode completion time for the 440/VGXT was 218 seconds.
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These improved transmission capabilities allow file-based mission replay using Readred at

speeds up to 12 times actual speed.)

Network reliability is another issue that bears mentioning. Quantitative data is not
available from RDT to show how many PDUs are transmitted by Readred and not received
by RDT,,, but the situation does occur. This problem is an inherent characteristic of
the underlying philosophy of DIS and its reliance upon the UDP/IP protocols where data
receipt is not guaranteed. Under normal conditions with aircraft maneuvering through the
exercise airspace, loss of a few Entity State PDUs is not even noticeable. However, when
weapon events are added to the complexity of the simulation, the loss of a single detonation
PDU is very noticeable. Instead of the weapon detonating at the required location, the
weapon’s location continues to be dead reckoned for an additional 12 seconds and the
detonation results are not available. If a Fire PDU is not received by RDTy,,, the weapon
is correctly propagated through the scene by the Entity State PDUs that are broadcast. but
the shot cannot be validated because the range, bearing, and closing velocity calculations
are not performed. This detracts from RDT’s usefulness as a debriefing tool. Repeated
demonstrations with the 15 July data file indicate that roughly one to five percent of the
Fire and Detonation PDUs are lost. It is currently not possible to determine the number

of Entity State PDUs which may be lost because of network difficulties.

6.2 Visualization

A performance measure that has often been used to compare relative processor ca-
pabilities is the number of frames per second that the graphics engine can generate. This
measure can only be used for machine comparisons if the geometry, shading, and lighting
conditions are the identical on each computer. If identical conditions cannot be duplicated
the frame rate comparison must be discounted. This section details the polygonal com-
plexity incorporated into the Red Flag terrain model in an effort to provide some context

for the frame rate performance statistics given later.

6.2.1 Red Flag Terrain Complezity. The Red Flag terrain used in RDTy,, is

constructed with four levels-of-detail. At the lowest level-of-detail, each of the six 1°
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Level # of Polygons
Lowest 48
Low 432
High 4800
Highest 43,200

Table 13. Polygonal Complexity in Red Flag Terrain

latitude x 1° longitude cells is divided into four equal subcells, each containing two triangles.
This gives a total of 8 polygons per cell and 48 polygons for all 6 cells. Figure 67 shows
how each of the subcells is further subdivided at the next higher level-of-detail into 18
triangles. A further subdivision of the subcell creates a level-of-detail that contains 200
polygons and at the highest level-of-detail the total number of polygons for each subcell
is 1800. Table 13 gives the total number of polygons contained at each level-of-detail for
the Red Flag terrain. The subdivision of each of the cells into four separate subcells was
done to allow the Performer software an opportunity to cull, or clip, pieces of geometry
from the scene and to provide finer control for the level-of-detail switching. Level-of-detail
switching and culling reduce the total number of polygons visible in the scene at any one
time and directly contribute to higher frame rates.

6.2.2 IVC Frame Rates.  Without the ability to poll the Performer software for
the number of polygons drawn in a single frame, it is extremely difficult to determine the
polygonal scene complexity and make rigorous frame rate comparisons. The frame rate
statistics provided in Table 14 are therefore presented in order to lay an intuitive foundation
for achievable frame rates on the SGI machines for RDTy;,. The statistics, taken from the
output of the pfDrawChanStats procedure, were averaged over an extended period of time

and reflect the following general conditions:

1. Approximately 42 aircraft models
2. An average of 6 weapon models

3. Red Flag terrain with four texture-mapped levels-of-detail and multiple cells visible
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Machine | Performer | Normal | Expanded | Full Screen
Type Version | (2 Chan) | (1 Chan) | (1 Chan)
440/VGXT 1.1 3-6 4-7 3-6
Onyx RE? 1.1 10-15 15-20 10-15
Onyx RE? 1.2 12-20 15-30 15-20

Table 14. Frame Rate Performance

Included within the frame rate statistics are a number of other graphics activities.
These include the labeling of each aircraft with a number or call sign, drawing an optional
flight-path history trail, drawing the HUD with a stroked font library, managing Forms
window events, and updating the Forms based data views. These additional activities can
reduce overall frame rates anywhere from 2-4 frames per second. The low frame rates shown
for the 440/VGXT are principally a result of the texture mapping used for the terrain.
Other tests conducted on the 440/VGXT without texture mapped terrain generally yielded
frame rates that were only 2-4 frames per second slower than the Onyx RE? machines using
Performer1.1. The optimum configuration at AFIT for RDTy,, is the four-processor Onyx
RE? workstation running Performer version 1.2. This configuration meets and exceeds the

desired frame rates for the RDT.

6.8 User Evaluation

To determine RDT’s suitability for performing mission monitoring and debriefing
tasks the interface requirements defined in section 4.1.1 can be used as a partial measure
of merit. Captain Jim Raulerson, an experienced mission analyst from the 57TG, was
asked to become acquainted with the RDTy,, interface and then use RDTy,, to evaluate
the performance of aircrews participating in the 15 July mission. At the end of the training
and «valuation period the analyst was asked to subjectively rate RDT)},,s capabilities in
comparison to RFMDS and to mission needs. Table 15 gives the results of that evaluation.
Additional capabilities, not included in section 4.1.1, surfaced during the evaluation and are
included in the table as well. Two things must be kept in mind, however, when examining
the table~the scope of the RDT project was very limited compared to the full capabilities
of RFMDS and the design of an equivalent system was never intended. The goal of RDT
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was to demonstrate the feasibility of developing a remote debriefing tool that used the DIS

protocol.

Column one of Table 15 identifies a list of specific capabilities that are possible on
one or both of the systems. Check marks in column two indicate which capabilities can
be found on RFMDS. A similar mark in column three indicates the capabilities included
in RDTy;,. When both systems include a capability and one system offers a significantly
higher capacity a ‘y/* symbol is used.

Examination of the table reveals that there are significant capabilities which RFMDS
possesses that still need to be incorporated into RDT. The two most important capabilities
are communications and replay. The ability to monitor the radio communications is crucial
in evaluating the situational awareness of the aircrews, flight coordination, and weapon
employment. (This last area is particularly vital because some aircraft do not send fire
control data to the RFMDS and thus no weapon simulations are computed. In addition,
the voice shot calls can serve as an alternate source of weapon fire events.) A variable-
speed replay capability is the backbone of the debriefs which follow the mission. RDT’s
limited replay capability available by recording the mission data with Converi and then
using the data file with Readred provides a mission replay capability, but does not allow

the mission to be paused or the replay speed to interactively be changed.

RDT’s strengths include realistic aircraft and terrain representations, extensive ca-
pabilities to modify view orientations with both spaceball and mouse, simple user interface,

analysis data, and most importantly, DIS compatibility.

A table of capabilities, like Table 15, provides some useful insight in determining
RDT};,s adequacy for debriefing a live mission. But the important question which must
be answered is ‘can RDTy;, provide the same analysis capabilities that RFMDS provides

for live air-combat-mareuvering?” The answer from Capt Raulerson was a resounding

«, n

yes.
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TRFMDS | RDTs. |

Plan View with Pan/Zoom Capability

Centroid View + Orientation modifier

Pilot View + Orientation Modifier

Tether View + Orientation Modifier

Ground Threat View

Flight Data Display

Engineering Data Display

Exercise Data Display

Weapon Summary Data Display

Archive Summary Data

Summary Data Reports

Simultaneous Data, Plan and 3D Views

Aircraft Pairing Information

Radar and IR Missile Lock Indications

Aircraft Flight Path History Trails

<Je el el <N«

Hard Copy Printouts

Radar and IR Missile Seeker Position
Symbols in Pilot View

Restricted Airspace Depiction

Modify Aircraft Color

NS

Monitor 8 Radio Channels

Variable Speed/Pause Replay

Weapon Empluyment from Console

Air-to-Ground Weapon Scoring

Threat Operator Video

< el eSSl el =

Geographic Bullseye Reference Point

Aircraft Pairing with Bullseye Poirt

Realistic, 3D Filled Polygon Models

Elevation Shaded Solid Terrain

Add Models for Threats and Targets

Aircraft Locator

Detach and Fly through Scene

Establish Viewpoint from ANY position

Weapon Detonation Animation Effects

Portable

DIS Compatible

View DIS Entities from other Sites

Broadcast DIS data to unlimited # of Sites

DIS Simulator Interaction with Live Aircraft
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Table 15. RFMDS/RDTy,, Capabilities Comparison
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VII. Conclusions and Recommendations

This chapter summarizes the success of the RDT as measured against tke original
thesis statement given in Chapter I and then makes recommendations for future effort and
research. The concluding portion of this chapter reports on capabilities, derived from this
thesis effort, which if further developed may significantly improve the training of today’s
aviators and better prepare them to meet the challenges of the future.

7.1 Thests Statement Revisited

The original thesis statement, or goal, can be subdivided into a number of supporting
object.ves. RDT can be evaluated against each of these supporting objectives to determine

the overall success of the thesis project.

Oojective number one was the development of a hardware and software system which
proved the feasibility of a DIS-based Red Flag mission monitoring and debriefing tool.
Successful achievement of this objective was demonstrated during on-site testing at Nellis
AFB. By simultaneous!y nsizg one of the RFMDS DDS consoles and RDT, the images of
both systems were projected onto two large viewing panels in one of the debriefing rooms
at Red Flag. Both panels showed the live activities of a two-ship as it conducted test
flights on the Nellis ranges. The source for the image on one panel was RFMDS and the
source for the other image was RDT. Comparison of the images on the two panels showed
icentical aircraft movements by both systems. Flight maneuvering in the RFMDS panel
was mirrored in the RDT panel. As the flight crossed one of the terrain features drawn by
RFMDS, RDT depicted an identical movement over the same terrain feature. The ability

to monitor live aircraft on the Nellis ranges using RDT is now a reality.

Objective number two specified an ability to transmit the aircraft telemetry to remote
sites. This capability was also simulated during the on-site test at Nellis by transmitting
the DIS PDUs over a fiber optic cable from the Data Translation Component (DTC)
in room 116 to the Interface and Visualization Component (IVC) located in room 234.
Although the distance is likely under 150ft, it demonstrated the capability for the DIS

data to be transmitted and successfully received using long distance mediums. The set
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of fiber modems could just as easily have been an equivalent set of hardware that could

convert the Ethernet protocols to those used with T-1 lines or other long distance networks.

Preparations are underway for a final demonstration of RDT’s capabilities to transmit
and receive D1S data over long distance networks. During this demonstration, Nellis, AFTT
and the ARPA Simulation Center will be connected on a wide area network. Live Red
Flag mission data will be broadcast to AFIT and ARPA. Both sites will monitor the live
exercise by using RDT. In addition, the Virtual Cockpit simulator at AFIT will receive
the DIS data and be able to “fly in the exercise.” The Virtual Cockpit will have complete
visiblity of all of the Red Flag aircraft and will be able to acquire the aircraft not only
visually but also on its siraulated radar, perhaps even employ weapons. Activities of the
Virtual Cockpit will be seen at both ARPA and Nellis on RDT. This will be the beginning

of simulator interaction with live aircraft.

Objective number three required an interactive interface to a state-of-the-art three-
dimensional image generator. The Forms software contributed the tools necessary to create
a graphical user interface which incorporated many of the same capabilities for view se-
lection and control that exist on the RFMDS DDS consoles. ‘The Silicon Graphics Onyx
machines with their Reality Engines formed the backbone of RDT},, and were directly
responsible for the system’s excellent frame rates. User evaluations confirmed equivalent

capabilities for live monitoring of Red Flag missions.

The final objective stated that RDT be constructed with off-the-shelf network com-
munications hardware and thesis software. All hardware used for the RDT implementation
was purchased directly from commercial vendors and required no further modifications.

Thesis software was tailored to the hardware components to create a complete system

which fulfilled all of the objectives of this thesis project.

7.2  Future Work

The future appears bright for the world of distributed simulation. Among the top
seven priorities that ARPA has chosen for future military technological research is the field
of distributed simulation. DIS compatible applications, such as RDT, will benefit from the
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additional resources and efforts dedicated to distributed simulation environments. In the
near term, a significant effort still remains to improve and extend the capabilities of RDT.

The following list suggests a few of the areas where additional research is warranted.

1. Communications — The DIS standard can be employed to transmit and receive digi-
tized voice data. Hardware and software packages exist on the market today which
might be adapted for use with RDT. The ability to monitor radio communications
would be a significant step forward for the remote debriefing concept.

2. Mission Replay - Additional effort should be dedicated to the development of a DIS
data logger. The logger would function not only in a record mode, but also would
be used to replay a mission, at variable speeds, from stored DIS PDUs. One of the
challenges tc be overcome here is the coordination with the Object Manager so that

appropriate dead reckoning positions are calculated for the variable replay speeds.

3. Orientation Dead Reckoning ~ Smoother aircraft rotations about its three primary
axes can be achieved by incorporating orientation dead reckoning into both Readred
and the Object Manager. This will create a higher fidelity simulation and cause fewer

distractions for the user.

4. Reengineering — Improve the current software architecture so that it can dynam-
ically grow to meet the challenges of thousands of DIS entities interacting over =
common network. The current limit is 500 players. This capacity has already been
exceeded. Effort could also be expended to improve the user interface and possibly

even incorporate voice technology to control RDTy,, functions.

5. Air-to-Ground Capabilities —~ Expand the current scope of RDT from air-to-air to
include air-to-ground. This involves the addition of target entities onto the terrain
and a means for target scoring. Data is already available within the RFMDS mes-
sage blocks that identifies the location of bombs at the point of impact. Additional

animation effects can also be incorporated to add a sense of realism.

6. Reports — No hard copy printouts are currently available with RDT. A capability
to generate printouts of the aircraft flight paths during a mission would serve as a

useful tool for debriefing. Weapon summary reports should also be included.
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7.

10.

HUD Symbology ~ Develop a suitable method that can be used to provide IR missile
seeker and radar target designator symbology onto the cockpit view’s HUD. This is
not a trivial matter. The azimuth and elevation angles for both the radar and the
IR missiles is given in every maneuver data message. There is no mapping of *hese
angles directly into any of the DIS PDUs. The articulated parts fields of the Entity
State PDU have been considered; however, the use of dead reckoning algorithms to
suppress the number of PDUs being broadcast complicates this issue. How do you
dead reckon the position of the changing HUD symbology between PDU updates?
Additional work that might be done in conjunction with efforts involving the Virtual
Cockpit would be converting the generic HUD now used by RDTj,, to the new Air
Force standard HUD symbology design.

. Implement New DIS PDUs — Many of the engineering and flight data views contain

fields that are currently not being filled because the data is not available in the DIS
PDU. This difficulty can be overcome by implementing an RDT PDU that would
contain such items as Indicated Airspeed, Mach Number, Augle of side slip, Crab
Angle. A new question arises, however, “how often should these PDUs be sent and

what effect will they have on the overall network traffic?”

. Evaluate Secure Network Communications — What impact will there be on the system

if the data is encrypted and decrypted. Can RDT be modified to work in a secure

environment?

Consolidate CCC and DTC ~ Figure 68 illustrates how the hardware design of the
current CCC and DTC might be reengineered to facilitate the consolidation of both
the CCC and DTC into a single component. The PC and the SGI could, theoretically,
be replaced with a single, high-speed, multi-processing workstation that possessed
both Ethernet and RS-422 capabilities. This consolidation would reduce the number
of serial devices in the data pipeline that are subject to failure and improve the

maintainability of the system.
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7.8 Looking Ahead

Thus far this thesis has documented the design, implementation, and performance
characteristics of the RDT yet it failed to answer the one question that champions a
project’s survival and future utility—'how can this new technology be applied to support
the Air Force mission-to Fly and Fight?' This section addresses that question directly
by looking first at RDT’s current capabilities and then looking forward to capabilities that
can be developed by extending this technology.

7.8.1 Current Capabilities. To explore what is possible today, the assumption
st be made that funds would somehow be available to support the purchase of SGI
workstations and dedicated, high-speed communications lines. Given that assumption, the

following list details immediate applications for RDT.

¢ Remote mission analysis for 57TG, 422TES. Fiber optic cables scheduled for instal-
lation in the near future at Nellis AFB could serve as the communications backbone
to the Red Fiag building. RDT could be used to monitor test missions from their

local sites allowing greater visibility to supervisors and test personnel.

e Aircrew debriefing at Red Flag. The thrust of RDT has always been to provide an
air-to-air debriefing tool with capabilities superior to any normally available to a
squadron. RDT can be used immediately at Red Flag as another resource to help
debriefing process.

o Red Flag Familiarization Training. With additional SGI workstations and Virtual
Cockpit soitware developed at AFIT, inexperienced pilots could sit down at a rudi-
mentary flight simulator workstation and fly in a Red Flag exercise vicariously. Be-
cause the Virtual Cocl:pit is another DIS application, telemetry information being
passed in the DIS PDUs is visible to the Virtual Cockpit. A young pilot could get
a feeling for the intensity of a Red Flag mission and some of the terrain before ever

strapping on a jet and putting his life on the line over the Nevada desert.
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o Planning Staff Feeiback. SGI workstations running RDT at exercise planning staff
headquarters could provide immediate feedback to mission planners. Lessons learned

on-the-spot could be incorporated quickly into follow-on mission plans.

o Remote mission analysis for 9BW. Installation or lease of T-1 communication lines
between Nellis AFB and Ellsworth AFB, South Dakota would allow test missions
flown by the 99BW on the Nellis ranges to be monitored. With the addition of audio
and DIS replay capabilities, mission analysis could be conducted at Ellsworth thus

reducing the need to deploy numerous individuals to Nellis for the mission test.

7 8.2 Future Capabilities. Looking a little further down the road to the time when
squadrons might have access to SGI workstations running RDT, Red Flag deployment
preparation would be superior to the local preparation now available. Squadrons could
begin monitoring the live Red Flag missions well in advance and learn first-hand what
tactics were working successfully. This cross-flow of tactical information could then be
used to improve the squadron’s tactics. Members of the squadron not participating in the
deployment could monitor the squadron’s success at Nellis and learn from their squadron
mate’s successes and failures. Virtual Cockpit software would also allow them to participate

as ’phantom wingmen’ in the exercise.

By developing an independent “black box” containing a GPS receiver and sufficient
data storage, a simple device could be created which could be taken aboard any aircraft, or
vehicle. The device would record the aircraft’s position and orientation. Once the aircrews
returned, the device could be taken to the squadron and the data downloaded into the
SGI workstation for an immediate mission replay capability. The format of the data would
be in accordance with the DIS standard thus allowing information exchange across either

local or wide area networks.

Such a device could drastically improve mission debriefs in both the training and
operational worlds. A complete mission anaiysis could be constructed quickly from the
RDT displays and because the data could be archived, a complete set of scenarios could
be constructed from live missions. These scenarios would show a trainee what the view

out-the-window is supposed to look like. “Classic” engagements could be analyzed over
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and over from any number of viewpoints. Virtual Cockpit software would allow additional
interaction with the stored scenarios and provide an opportunity to explore the ‘what if’
situations. No longer would the air-to-air instructor be tied to using hands, sticks, models
or other training aids to convey the salient points of air combat maneuvering. The student

could be shown the correct maneuver as well as ways to avoid common mistakes.

Missions flown against other units with the GPS based devices would allow all partic-
ipants to view the mission simultaneously from remote locations by broadcasting their DIS
data onto the network during the mission debrief. The visual presentations of the RDT
displays and simple teleconferencing between the units could create a mission debriefing

session rivaling RFMDS.

If a transmitter could be incorporated into the device, a real-time monitoring device
could then be available in every squadron. The need for complex, instrumented ranges
might be drastically reduced. Everywhere a squadron flies would become an instrumented
range. Squadron supervisors could know the exact location of all of their aircraft. Aircrews,
using RDT, could increase their awareness of squadron tactics and standards and improve
their overall performance. A student in Undergraduate Pilot Training (UPT) could be
shown that the barrel roll he thought he flew was nothing more than a corkscrew and
then he could be given the opportunity to explore ways to improve the next time. Making
information available to the aircrews about their flight performance allows problem areas

to be identified early and firmly implants successful strategies in the aviator’s mind.

The near future will also bring a capability for simulators to interact fully with live
aircraft. As the real and virtual worlds grow closer together, the need for a debriefing
tool that unites the activities of both worlds into a cohesive analysis will only intensify.
Large-scale exercises involving thousands of DIS entities, both live and simulated, are on
the horizon, and tools, such as RDT, which can provide the “big picture” to commanders,

planners, and aircrews alike will serve a vital role in improving tomorrow’s capabilities.
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Appendiz A. Command State Dynamic Models

This appendix contains the state transition diagrams for each of the command states

of the user interface design described in section 4.1.2.2.

Figure 69 describes the states and the paths between them that are necessary to
select an aircraft with any of the aircraft select buttons labeled A /C. The region within
the dotted lines of Figure 69 is used in subsequent diagrams as a “black box" component
which determines whether or not the number entered by the user corresponds to an active
aircraft. No action is taken if the aircraft is inactive. If the aircraft number exceeds preset
limits, an error message is displayed. If the number is validated, that aircraft number is
made available to other functions within the IVC. This “black box” is used as a building
block in *he creation of complex activity paths.

Figure 70 illustrates the path that must be traversed in order to change the color of
a given aircraft or change the length of all of the aircraft’s flight path history trails. Figure
71 shows how a file is selected to store weapon events occurring during a given mission.
Figures 72 and 73 portray how the data view control information is modified. Figure 73
180 indicates the sequence of actions necessary to control the “Pzir” data view display.
Figure 74 shows how a single button press can be used to change the state of control panel
objects from on to off or vice versa. Figure 75 depicts the paths used to change between the
different 3D views and their subviews. Figure 76 illustrates how the control of the graphic’s
window is managed so that the views can be enlarged from their normal 1/4 screen size up
to the use of the full screen. The “command state” needed to activate a larger positioner
which provides a finer level of view movement is shown in Figure 77. Figure 78 portrays
the path through states that must be taken in order to present information to a user about

a predefined topic.
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Appendiz B. Convert

NAME
Convert -- Convert RFMDS message blocks to Ethernet packets

SYNOPSIS
convert [options]

DESCRIPTION

Convert is a program which parses out the individual
messages contained within the RFMDS CCS-to-DDS message blocks.
The source of the block may be either a disk file or V.35 port.
The disk file must be a raw, unfiltered, CCS data file. Messages
parsed out of the blocks by Convert are output onto Ethernet port
1500. Message output may optionally be saved to disk. The
program terminates on keyboard input.

OPTIONS

b size
Sets the read buffer to size bytes. Default size
is 6144 bytes.

-h host
IP address of the machine that the messages are to be
sent to. For example, 129.52.101.111 -- Michelangelo
at AFIT (default IP address).

-r readfile

Name of the raw data file that is to be used for the
source of the RFMDS message blocks.

-w writefile
Name of the data file where the individual messages are
to be archived for later use by Readred.

Enable debug mode.

EXAMPLES
convert -h 129.92.101.117 -r \RFMDSDAT\15JUL93.TLN

Read message blocks from the 15JUL93.TLN data file and

sends the individual messages to host 129.92.101.117 on
port 1500.
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convert

Here the Convert program reads mescage blocks
from the V.35 port and sends the individual messages
out port 1500 to host 129.92.101.111.

HARDWARE REQUIREMENTS

Convert runs on an 80386/80486 Computer with processor clock
speeds of at least 33Mhz. An Industrial Computer Source ACBS
V.35 interface card and a Western Digital 8003 Ethernet card are
also required. Clarkson, public domain, packet drivers are used
for the Western Digital Ethernet interface.

SOFTWARE SOURCE CODE

The source code for convert is archived at AFIT in
/usr/people/wb/src/RDT/ccc/rdt_pc.zip on the Onyx machines. This
compressed .zip file contains all of the source and libraries
necessary to compile and build an executable program. The .zip
file may be uncompressed by using the DOS PKUNZIP.EXE program .
The source code also exists on the 486 computer in the Graphics
Lab (Escher). The raw data file used by convert is located on
Escher in the \RFMDSDAT directory and is called 15JULS3.TLN.

BUGS
The write option as currently implemented does not generate

the correct data format. Planned correction of the problem is
scheduled for Jan 94.

AUTHOR
Bruce Clay with minor modifications by Mike Gardner (1993)
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Appendiz C. Readred

NAME
Readred -- Translate RFMDS messages into DIS PDUs

SYNOPSIS
readred -d [network|datafile] [optionms]

DESCRIPTION

Readred is the data translation component (DTC) of RDT.
Readred accepts individual RFMDS messages from either the convert
program as broadcast over an Ethernet network or from a disk
file. Output from the program consists of Entity State, Fire and
Detonation PDUs IAW the DIS v2.0.3 draft standard. When using
the network as a source of input, both the receive and send
daemons writter by Bruce Clay must be installed on the host
system prior to running Readred. Only the send daemon is
required if the input source is from a disk file. (Ensure that
the port being used by the convert program is the same number as
the port being monitored by the receive daemon.) The Readred
program terminates after an input data file has been completly
read or the user interupts execution with a control-C.

The datafile used with Readred MUST have first been filtered by
the XFilter program. Readred will not function correctly if raw
RFMDS message blocks from a raw data file are used as input.

The redflag.cfg must be in the same directory as the executable
Readred. Redflag.cfg contains reference information about the
different message types used by RFMDS and the mappings between
the redflag aircraft type identification pumbers and the DIS
Entity Type record. Mappings are present for both aircraft
and weapons. The format definitions for the Redflag.cfg

are included within the header information of the file.

All DIS PDUs generated by Readred use unique Entity ID record
values. Until a permanent site ID is assigned to Nellis AFB, 711
is used to identify the site and 99 is used to identify the host.
RDTdis looks for the 711/99 site/host values to differentiate a
live Red Flag participant from any of the other DIS entities on
the network. If these values change, corresponding changes in
the RDT Object Manager must also be made.

Additional output generated when the input source is a data file

consists of a tally of the number of individual RFMDS messages
processed in the file except for message types 3 and 15. The

160

vl



tallys given for type 3, maneuver data, and type 15, weapons
data, reflect the Entity State PDUs generated as a result of the
RFMDS maneuve: and weapons data messages. Aircraft whose
location data is known to be questionable will not have PDUs
generated. A tally of the number of such occurances is also
displayed with the statistics. The elapsed time display reflects
the number of seconds used to process the file. The RFMDS elapsed
time reflects the difference between the first RFMDS range time
message in the file and the last range time message processed.

OPTIONS
-2
Analyze the network traffic for each of the high
activity aircraft. The amounts to a PDU talley for
each of the aircraft.

=b AircraftNumber
Restricts the broadcast of Entity State PDUs for all
high-activity aircraft except AircraftNumber. This
provides a way to isolate the activities of a single
high-activity player.

-e
Show non-fatal error messages

Use a socket based interface to control activities
within Readred during execution. This has not been
tested and is considered unreliable.

-i [lolhilwpnifdiall]
Print (inspect) the contents of the specified PDUs as
they are broadcast onto the network. (Debug option)
Select between low-activity, high~activity, weapons
(ES, FIRE and DETONATION), weapons (FIRE and DETONATION
only), or all PDUs.

~m
Print the PDU message definitions taken from the
redflag.cfg file. (Debug Option)

-n DeadReckoningThreshold

Specify a new position dead reckoning threshold
tolerance. The default tolerance is 10.0 meters.
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-0

~P

-r

-85

-v

Enable orientation dead reckoning. Not currently used.

Print the contents of the participant records when they
are received  (Debug option)

Disable dead reckoning. PDUs are generated for all
aircraft at the RFMDS 10Hz rate. If dead reckoning is
disabled inside Readred, dead reckoning inside RDTdis
should also be disabled. This combination allows a
direct input of the RFMDS data into RDTdis.

Print (show) the RFMDS message types as they are
received.

Enable TURBO mode. PDU and RFMDS time synchronization
is disabled. PDUs are broadcast as fast as possible.
The -t and -r options can be used for network
throughput testing since the maximum number of PDUs
are generated with these options enabled. (Only valid
for data file input. Network input is processed in
real time.)

Verbose mode. Show all debug statements. Use only as
a last resort because of the volume of infocrmation that
is generated.

~x AircraftNumber

-w

Extracts the time and location for the specified
AircraftNumber to the "xdata.log" file. These values
are stored in ascii format thus allowing them to be
used as input to programs such as GNUPLOT which can
then analyze the location information generated by
RFHDS.

Print RFMDS weapons data. (Debug only)
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~Z

Show Zulu Time. (Debug Option)

Examples:

raadred -d data/15Jul.filter ~pn 1.0

Start readred using the 15Jul.filter data file and use a 1.0
meter dead reckoning threshold tolerance.

readed -d network -s -p

Execute readred with input data coming from the network.
Show the message types being processed and also print
the participant data when received.

readred -d data/.5jul.filter -t -r

Disable deud reckoning and time synchronization to send
PDUs as fast as the system will allcw., This is the maximum
throughput test mode.

readred ~-d network -x 24 -b 24

Entity State PDUs ror aircraft number 24 are broadcast

while 21l other Fntity State PDUs for high-activity aircraft
are suppressed. At the same time, the location data is
saved into xdata.log for aircraft number 24.

SOFTWARE SOURCE CODE

The source code for .teadred is located in the
/usr/people/wb/src/RDT/dtc directory.

SEE ALSO

Convert, XFilter

AUTHOR

Bruce Clay
Majer Michael Gardner
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Appendiz D. XFilter

NAME
XFilter -~ Filter RFMDS message blocks

SYNOFSIS
xfilter [options]

DESCRIPTION

XFilter is a utility program that accepts as input a raw
RFMDS data file, which most likely was downloaded from magnetic
tape, and outputs a file containing comnsecutive individual RFMDS
messages. RFMDS message blocks sent to the VAX computer at RECOM
for post-mission analysis contain 6144 bytes. If the number and
contents of the individual messages contained within the block
does not fill the entire block the space remains unused.
Over the course of a single mission approximately 1/3 of the
space within the fixed size blocks is unused. The XFilter program
skips =any unused portion of the block as it parses out the
individual messages. An additional filtering option is possible
with the ~f switch.

XFilter’s other primary use is to extract portions of the raw data file
int: an output file by specifying the beginning block number and

the number of desired blocks to be filtered. The input block

size is 6i44 bytes.

OPTIONS
~f
Filter out all RMFDS messages except the high and low
participant data messages, maneuver data message and the
low-activity data message. This switch effectively eliminates
all weapons information in the new output file.

SOFTWARE SOURCE CODE

The source code for xfilter is in the /usr/people/wb/src/RDT/xutils
directory. The only raw data file that exists at AFIT at present
is in the /nipper3/mgardner directory and is called 15JULS3.TLN.

AUTHOR
Major Michael Gardner
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Appendiz E. User’s Manual

Welcome to the Remote Debriefing Tool (RDT) for Red Flag Missions. This user’s
manual is designed to familiarize you with the basic operations of the RCT. The manual

contains three sections: Getting Started, Running RDT},,, and Performing Analysis Tasks.

E.1 Geiting Started

This section details the hardware and software requirements for setting up the pro-

gram. Also included are directions for setting up the data pipeline and configuring RDTy;,-

E.1.1 Required Hardware. The following equipment is required to create the
complete hardware pipeline from port 4 of the Red Flag Measurement and Debriefing
System (RFMDS) to the Interface and Visualization Component (IVC) workstation. Those
items which have an asterisk are the minimum items necessary for an abbreviated pipeline-

Readred using a data file and broadcasting to the IVC workstation.

— s ettt
——— —— m———

Item

V.35/RS-422 Protocol Converters

RS-422 Ribbon Cable with 3 connectors

RS-422 A/B Switch

RS-422 Cable, 100 ft.

ACBS V.35 1/O Board for PC

Short. V.35 cable from converter to V.35 PC board
Western Digital 8003 Ethernet Board for PC
Delni Fan-Out Box*

Thickwire Ethernet Cables®

Fiber Modems (Fiber - Ethernet)

Fiber Optic Cable, 100 ft.

IBM PC Compatible 80486 with Large Capccity Disk Drive
SGI Workstation (Single- or Multi-Frocessor)®
SGI Onyx RE? Workstation®

HHHHN#HHHHHHH&,‘%

Table 16. RDT Equipment List

(Note: Another possible configuration is to use oniy *he Onyx workstation and have
Readred and RDTy;, running on the same machine. This configuration, however, yields

slower frame rates.)

165



V.35/RS422

Protocol
ey s gtm ?\v P
® Fiber Modems ‘ir
® _RS-422 VAX
] -——
s:’n-‘% "] vas fdon 10
RS Card
100 ft
RS422
Cable
RFMDS
Message
BLOCKS
3830:2}(;1 Ethernet
Deini Fan-out Box
1
wam Fiber Optic Cable p
DIS PDUs | . u

Figure 79. RDT Hardware Configuration
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The equipment should be connected as shown in Figure 79. Because the active
“T” junction created to tap into the RFMDS data stream directly affects data going to
the VAX computer, you must first coordinate with RECOM personne] for approval to
install the “T.” As long as the V.35/RS-422 converters are powered, there should be no
interference with the RECOM operations. If, however, the “T” is deactivated, the 100
ft RS-422 cable serves as a great antennae and brings a lot of noise onto the lines. This
noise effectively shuts down the RFMDS-VAX communications link. The “T” must be

completely disconnected if it is powered down.

E.1.2 Required Software.  All source and executable software for RDT is located
in the /usr/people/wb directories on the Onyx machines. The /fusr/people/wb/bin/RDT
directory contzins the executable software and the /usr/people/wb/src/RDT directory
contains the source code. The following files located in the “bin” directory are needed to

run the RDT:

e RDTdis (executable)
o afitlogo.rle

¢ n37wll5.small.rgb (texture maps)
e n37wll5.small.rgb.attr
e n37wll6.small.rgb

e n3/wll6.small.rgb.attr
e n37wll7.small.rgb

e n37wll7.small.rgb.attr
e n38wlld.small.rgb

¢ n38wll5.small.rgb.attr
e n38wll6.small.rgb

¢ n38wll6.small.rgb.attr
e n38wli7.small.rgb

e n38wll7.small.rgb.attr
¢ rdtEffectsMgr.dat

e rdtLocalModelMgr.dat
¢ rdtTerr-inMgr.dat

e MissionColors.dat
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rdtSGIDefauitColors.dat
rdtTypeMap.dat
readred (executable)
redfiag.cfg

tub.fit

xfilter (executable)

L ]

In addition to the above files, RFMDS mission data files must be available for use by
Readred as well as a set of Multigen model files for RDTy,,. A couple of suitable RFMDS
mission data files are located in the /usr/people/wb/bin/RDT /data directory. The mission

data files are:

e 15Jul.filter
s get.d3

The current model files located in the /usr/people/wb/bin/RDT/models directory

include:

o 707+aflt

e RedFlagTerrain.round.fit
e al0-a.fit

e b_flame.fit

o dfit.model.1.fit

o f-4 new fit

o fl11.M1t

e fl5c+afit

e fl5nolod.fit

o fl6+a.fit

o fal8+afit

o fireball.fit

o foker_med.ft

o mk82.fit

e newRFTerrainFlat.fit
sa2_misl+a_2.fit
sa3_misl+a 2 fit
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e sidewinder plume.fit
¢ uh60+a.fit
o yR22+afit

E.1.8 Setting Up the Data Pipeline.  The following subsections explain how to
start the software programs necessary to set up the data pipeline from RFMDS to the
Computer Communications Component (CCC), Data Translation Component (DTC) and
IVC.

E.1.3.1 Convert.  Instructions for running the Convert program are con-

tained in Appendix B

E.1.3.2 Starting Daemons. In order for Readred to send distributed inter-
active simulation (DIS) protocol data units (PDUs), and for RDTy,, to receive PDUs, the
AFIT DIS daemons must first be started. Because only one send and one receive daemon
may run on a single machine, it is wise to first determine whether the required daemons
are active. Do this by using the ps -elf | grep sgi command from the UNIX prompt. If the
daemons are active, there will be an eatry in the resulting display showing the name of the
process and any command line options that were used to start the daemsn. You should
pay particddar attention to the ‘-p’ option. This determines which ports are being used by

the daemons for the network communication.

If you are setting up the system to run the Readred program, you must start a send
daemon and optionally start a receive daemon. The receive daemon is only required if you
will be receiving individual RFMDS messages from the CCC. If you are setting up the

system to run RDTy,, you need only start a receive daemon.

To start a receive daemon, change to the /usr/people/wb/bin/Daemons directory
and type sgirecvd -b100 -p8000 &. This will start a receive daemon using 100 buffers on
port 3000. Any port between 2000 and 6000 may be specified. If you desire the receive
daemon to receive PDUs from a send daemon on the same machine, use an additional -0

switch on the command line when starting the receive daemon.

169




To start a send daemon, type sgisendd -b100 -pS000 &. This begins a send daemon
with 100 buffers on port 3000. The same port number assignments apply to the send

daemon as described for the receive daemon.

IT IS IMPERATIVE THAT THE SEND AND RECEIVE DAEMONS
BE CONFIGURED TO USE THE SAME PORT.

If you determine that one of the daemons is not configured to use the same port as
the other, you should stop the daemon and restart it. To stop the daemon type sgirecvd -¢

or sgisendd -q depending upon which daemon needs to be terminated.

It is possible to have a daemon terminate and not release the semaphores associated
with it. Use a combination of the ‘ipcs’ and ‘ipcrm’ UNIX commands to remove the

semaphores. See the system documentation for details about these commands.

E.1.3.83 Readred.  Instructions for running the Readred program are con-
tained in Appendix C

E.1.{ Configuring RDT. RDT was designed to allow as many changes to the
underlying DIS and RFMDS definitions as possible by using a number of configuration files
that are read during the initialization of RDTy,,. This same concept is used with Readred.
The following sections describe the procedures that can be used to make changes to the

RDT configuration.

E.1.4.1 Model Managers. RDTy;, contains several Model Managers which
are responsible for determining the location of any geometric models that are needed for
the scene rendc.ing. Four data files are used to communicate to the model managers where

the models are located. The format for each of the data files is identical.

When the RDT,;, Net Manager determines that a new aircraft model needs to be
inserted into the scene, it first uses the Local Model Manager information to find the model
instead of using the Net Model Manager information. If the model cannot be located with
the Local Model Manager, the Net Model Manager is used to find an appropriate model
from the standard models library (/usr/people/wb/models). This mechanism provides an
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override feature that is useful for replacing the standard library models with ones of your

own choosing.

The Effects Model Manager is used to locate the models that are used with munition
detonations, while the Terrain Model Manager is used to determine which terrain model

will be loaded into the scene geometry list.

Each of the data files used with the model managers is divided into two sections.
The first section contains an index number, directory name, and file name for each of
the models. The second section contains an object manager type number and the model
index numbers from section one that will be associated with the undamaged and damaged
entity’s appearance, respectively. The object manager’s type number is tied directly to an
enumerated type definition within the object manager software. This is the mapping that
the object manager uses to convert from the multiple-field DIS type definitions to a single
number. To change the model that is inserted for a given entity type, simply change the
mode] index numbers in section two. As new DIS entity types are added to the object
manager, additional mapping data will need to be inserted into section two. As new models
become available, assign new model index numbers and insert the directory/file names into

section one of the data files.

The rdtTerrainMgr.dat uses one additional field that the other model managers do
not use. This is the comment field in section two. If the comment field contains three
numbers, these are interpreted as the WGS84 (z,y, z) position of the origin for the terrain
model. Terrain models designed to be used with the DIS ‘round earth’ coordinates must
have this origin information included in the comment field. If the origin data is not present,
RDTy,, interprets the terrain as a flat earth patch and the round-to-flat transformations
are not performed. To use other terrain patches with RDTy,,, simply comment out the Red

Flag terrain entries in the rdtTerrainMgr.dat file and add entries for the desired terrain.

F.1.4.2 RFMDS-DIS Player Type Mappings.  Two data files are used to
map the player type definitions between RFMDS and DIS. The redflag.cfg file is used
by Readred while the rdtTypeMap.dat file is used by RDTy;,. Both files should remain

relatively static and require little modification.
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RFMDS Type | DIS Entity Type | Comments
1 (122252101) | A-4/1
2 (122252102) | A-4/2
201 (122254100) | KC-130
202 (122254500) | KC-135
203 (122254600) | KC-10
255 [ (12225000 0) | Spare

Table 17. Extracts from redflag.cfg

The redflag.cfg file is divided into two principal sections. Section one contains infor-
mation about the individual RFMDS messages. This data is no longer accessible, but is
still parsed by Readred. (There are still a number of clean up items that can be performed
on Readred and this is one of them.) Section two contains the RFMDS to DIS player type

mappings. Extracts of items from section two are found in Table 17.

For each of the 255 possible RFMDS aircraft types shown in coluran one, correspond-
ing DIS entity type definitions and aircraft names are given and shown in columns two
and three. RFMDS spare types are mappsd to an undefined DIS entity type that causes
an object manager error message. The multiple entries for a single RFMDS aircraft in the

table correspond to different external store locations used to carry the AIS pod.

The rdtTypeMap.dat file is used to convert player types from the DIS definitions to
the RFMDS aircraft type definitions. The object manager used within RDTy;, defines a
single type number for each of the DIS entity types. It is the object manager’s number
that is passed to RDTy;, and used for the conversion. Table 18 illustrates an extract from

rdtTypeMap.dat.

Column one of the data file contains the first RFMDS type identifier that corresponds
to the object manager’s type number. Column three contains comments. The object man-
ager’s type number defined in common.enums.h and shown in column four is used as the

primary search key for the table. If either of the aircraft type identifiers used by REMDS
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RFMDS | RFMDS | Comments | ObjMgr Type #
Start # | End #
0 0 Spare 0
1 5 A-4 133
6 7 A-6 134
12 19 A-7 135
201 201 KC-130 145

Table 18. Extracts from rdtTypeMap.dat

Red | Green | Blue | Forms Color | Comments
0 0 0 0 Index 0 - Black
195 0 0 80 Index 1 - Red
0 0 255 4 Index 2 - Blue

Table 19. Extracts from rdtColorTable.dat

or the object manager’s type numbers change, both the redflag.cfg and rdtTypeMap.dat
data files must be modified to refiect the changes.

E.1.5 Changing Colors.  Aircraft numbers, call signs, and flight path trails are all
color coded to correspond to a particular mission role assigned to a player. For example, red
is used for the defensive-counter-air player’s color, white blue is used for interdiction player.
Color assignments for the various mission roles are defined in the Computer Performance
Specification Interoperability volume, table 3.4.2-9, sheet 3-100. These assignments can
easily be changed by editing two data files—rdtMissionColors.dat and rdtColorTable.dat.

The rdtCoiorTable.dat file is used to create the RDTy;, Color Table. This table
contains red, green, and blue (RGB) color values for each of the 11 colors currently defined
and used to draw the player numbers, call signs, flight path trz’ls, and plan view symbology.
Table 19 represents an extract from the rdtColorTable.dat file used to build the Color Table.

Column four of the Color Table contains a color index, used by the Forms Designer,

that corresponds to the RGB colur values in columns 1-3. The RGB values are used with
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MggTon Role“ Color { Comments

AAR 3 Green Index 0

ABCC 3 Green Index 1

ADF 1 Red Index 2
4

AMR Yellow Index 3

: . :

Table 20. Extracts from rdtMissionColors.dat

the SGI graphics language library functions to draw the aircraft numbers, call signs, and
flight path trails. Thus, an aircraft with color number ‘2’ will have its flight path trail
drawn in blue. The Forms Designer color index is used to color the button labels on the
‘Mission Code auxiliary control panel to show the mapping between the mission roles and

the assigned cclors.

Mission roles and the corresponding color assignments are made in the rdtMission-
Colors.dat file. Extracts from that file used to create tne Mission Color Table are shown

in Table 20.

Mission role values assigned to each aircraft in the RFMDS data range from 0 - 25.
For each of the 26 values, a color index is assigned that corresponds to the array index used
to reference the colors in the Color Table. As an example, assume aircraft number 10 is
assigned an ADF role. The RFMDS data would contain a ‘2’ in the mission identification
(ID) field of the maneuver data message. The mission ID would then be translated to the
capabilities field in the Entity State PDU by Readred. RDT,,, would then use the color
value ‘2’ as an index into the Mission Color Table. This value would be mapped to index
‘1’ in the Color Table and the RGB triple corresponding to the color red would be used to

draw the aircraft’s number, ‘10.’

The number of colors available for mission rcles and the current color mappings may
be changed by modifying either of the two data files described above. If additional colors
are added to the ~dtColorTable.dat file, you must also determine the Forms Designer color

index corresponding to the RGB triple you are adding to the file.
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E.2 Starting RDTy;,

Once the data pipeline is set up, you are ready to run RDTy;,. Change to the
/usr/people/wb/bin/RDT directory and type: RDTdis. No additional coramand line op-
tions are required. If the receive daemon is active, you should see a series of initialization
messages on the console. If the daemon is not running, RDTy,, will terminate. Addition-
ally, an eom.arena file in /usr/tmp that was created by another user may cause RDTy;,
to terminate. If the error message displayed on the terminal indicates that this is the
case, delete the /usr/tmp/eom.arena file and restart RDT,;,. To delete the file type:
rm fusr/tmp/eom_arena. The remaining subsections describe the various controls of the
RDT,,, control panels and the methods used to manipulate views into the Red Flag envi-

ronment.

E.2.1 Device/Viewport Configuration.  The first control panel that appears when
RDTy;, begins execution is shown in Figure 80. RDT,,,’s default configuration is set such
that the Plan View appears on the right graphics viewport and the 3D Views appear on
the left. This default configuration may be changed by pressing either the Plan View or
3D View buttons on the configuration control panel.

RDTy, is currently configured to use only an SGI spaceball. Future implementations
may elect to add other view modifiers. Until that time, the Future Device buttons are not

used.

If changes are made to the default configuration, press the Accept button to incor-
porate these changes into RDTy,,. Information about the development of RDTy,, can be
viewed by pressing the About RDT(dis) button. After the desired configuration has been
accepted, press the Uontinue button tc move to the RDT},, master control panel. The
entire screen should go black momentarily while performer initializes the graphics window.

Once the master control panel and the terrain appear, RDTy, is fully operational.

If no players appear, confirm that Readred’s send daemon and RDTy,,’s receive dae-

mou are using the same viewport. Also check to see that Readred is still broadcasting.
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Figure 80. Configure Panel

E.2.2 RDT Controls.  The workstation monitor is divided into four quadrants.
The 3D View is in the upper left quadrant, and the Plan View is in the upper right
quadrant. The lower left quadrant, identified by the AFIT logo, serves as the location for
auxiliary control panels and data views. The master control panel, located in the lower
right quadrant of the screen, is operated by the user with a standard m« . The individual
controls on any of the control panels are operated by clicking the left mouse button on top
of the desired button, slider or positioner. These mouse-based movements are also referred

to as selecting/pressing buttons or moving sliders and positione-s.

E.2.2.1 Control Panel Sections.  Figure 81 shows the master control panel
and its logical subdivisions. The main keypad is in the upper left hand corner. The Toggle
buttons are in the upper center, and the Expand View and Quit buttons, as well as the
clock, are in the upper right hand corver. Directly under the Toggle buttons are the Plan
View controls. The positioner crosshairs, in the miadle of the control panel, move the

Plan View’s view position over the terrain in the upper right-hand quadrant. The ‘+’
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Figure 81. Master Contro] Panel

symbol indicates the current view position. Along the left hand side of the control panel,
you will find the 3D View controls. Located along the right hand side are the Data View
select buttons. The Help button is located in the lower right hand corner of the control
panel. The subsections that follow describe each of the controls on the master and auxiliary

control panels.

E.2.2.2 Help. Pressing the Help button on the master control panel acti-
vates the Help auxiliary control panel as depicted in Figure 82. At the present time, only
the Function Keys button will display any useful information. The remaining buttons are

present only to display a help capability.

E.2.2.83 RHReypad. The keypad. located in the upper left hand corner of the
master contro} panel. is used to enter player identification numbers. (Plavers is a term
used to represent either aircraft. weapons. or other network entities.) RDTy,, is currently
configurec to aliow up to 300 plavers. Playver number assignments are enumerated in

Table 21.
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Figure 82. Help Panel

Player # | Player Type
0 Bullseye Player
1-255 | Red Flag Players
256 - 400 | Red Flag Weapons
401 - 500 | Network Entities

Table 21. Player Number Assignments

The keypad is activated when any A/C, FTR, or TGT button is pressed. Once
activated, the background color of the keypad’s information window turns red. To enter a
player number, simply click on the numbers with the mouse, and then click on the Enter
button. Once the keypad is activated, the Enter button MUST be pressed. As long as
the background color of the keypad information window is red, the keypad is still looking
for a valid input. Pressing the Enter button changes the background color to green, and
deactivates the keypad. If the number entered corresponc; to a player that is currently
active, the number is accepted. If the player is not currently active, the ‘Inactive A/C’
message appears to inform you that the number you entered was ignored. (Note: As long
as the keypad background is red, many of the other controls on the panel are locked out.
Press the keypad Enter button to unlock.)

E.2.2.4 Spaceball. The SGI spaceball, which commuricates with the work-
station on port 2. can be used to modify the 3D Views in RDTy,. The spaceball offers

six degrees of freedom: translation forward and backward. left and right, up and down,

178




as well as pitch up and down, roll left and right, and twist left and right. In general,
pushing forward on the spaceball moves the view position forward along the view player’s
orientation vector, and pulling backward on the spaceball moves the view in the opposite
direction. Pulling up and pushing down on the spaceball correspond to vertical movements
of the view position. Twisting the spaceball left or right rotates the view around the view
position’s local vertical coordinate axis. Roll inputs to the left and right are currently
ignored in this application, however, rolling the spaceball forward causes the view to pitch
down and rolling the spaceball backward causes the view to pitch up. The view posi-
tion translations and rotations just described are only applicable if the view orientation
is ‘straight and level.” Once the view orientation changes, such as when the 3D View is
attached to an aircraft performing some 3-dimensional rolling maneuver, the conventional

notions of movement with the spaceball change. The next paragraph explains why.

The 3D View’s position and orientation is determined from the currently selected 3D
View. This position and orientation in the world coordinate reference frame becomes a
local reference frame for inputs taken from the spaceball view modifier. Thus, a forward
movement on the spaceball translates the view forward along the view orientation vector.
For example, assume we are attached to an aircraft pointing straight down in the world
coordinate reference frame. Pushing forward on the spaceball, moves the view forward in
the local reference frame, but that forward movement translates to a downward movement
in the world coordinate reference frame. Pulling the spaceball backward translates the view
in the local reference frame backward but that translates to a vertically upward movement
in the world coordinate reference frame. If this all seems a little confusing, here is another

example to clarify how the spaceball modifies view positions and orientations.

Presume that the tether view has been selected and that you would like to view the
front of the aircraft. Pushing forward on the spaceball will translate the view position
forward along the aircraft’s beading until the desired position in front of the aircraft is
reached. Twisting the spaceball left or right will rotate the view around until the front
of the aircraft is visible. So far, everything seems normal. If, however, you wanted to
move the view position closer to the front of the aircraft, you would have to pull the

spaceball backward, instead of pushing the spaceball forward, to get the desired movement.
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Twisting inputs on the spaceball do not modify the base orientation of the 3D View.
Translation inputs from the spaceball are combined with the base orientation of the 3D

View to determine the modified view’s final orientation.

Because the view modifications are made in the local reference frame, the spaceball
has limited usefulness when the 3D View position is not oriented ‘straight and level.” A
view reset button located on the forward surface of the spaceball nullifies any previous
spaceball inputs. The spaceball is best suited for the Anchor and Detach Views and has
limited utility with the other views.

Buttons 1-4 on the front of the spaceball support are used to increase/decrease the
translation and rotation sensitivity of the spaceball. Pressing button 1 or 3 increases the
spaceball sensitivity for translations and rotations respectively. Pressing button 2 or 4

decreases the sensitivity.

E.2.2.5 Plan View. Two controls associated with the Plan View are the the
Positioner window and the Range slider, located immediately to the right of the Positioner.
The number at the top of the Range slider represents the number of miles “visible” in the
Plan View. The Range slider is used to move the view position vertically up and down and
produces the same effect as the zoom feature on a camera. Moving the Range slider to the

top gives you the widest possible view, with a maximum horizontal range of 200 miles.

The intersection of the crosshairs in the Positioner window represent the relative
position of the cursor, ‘+’, in the Plan View. Clicking the mouse anywhere in the Positioner
window moves the crosshairs to the mouse position, with a corresponding movement of the
cursor in the rizn View. Latitude and Longitude windows, located below the Positioner

window, display the world coordinates of the cursor in the Plan View.

Pressing the Refine button, to the right of the Latitude and Longitude windows
on the master control panel, brings up the Refine auxiliary control panel illustrated in

Figure 83 and deactivates the Plan View controls on the master control panel.

The purpose of this auxiliary control panel is to allow finer movements of the cursor

over the ter: ain. The controls associated with this control panel are identical to the Plan
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View controls on the master control panel. To remove the auxiliary panel, simply press

the Done button on the lower right side.

E.2.2.6 8D Views. There are three main 3D Views~Centroid, Cockpit, and
Tether. The Tether View has two subviews: Anchor and Detach. Use the buttons on the
left side of the master control panel to switch between these views. A green light next to

the button indicates which view is currently active. Only one may be active at a time.

Centroid View.  The Centroid View focuses the viewing volume upen
the selected players and automatically repositions the view volume to keep these centroid
players in sight at all times. Pressing the Centroid button brings up the Certroid auxiliary
control panel, activates the heading and elevation sliders (located just below and to the

right of the Centroid button, respectively), and deactivates the Cockpit and Tether buttons.

When the Centroid auxiliary control panel of Figure 84 is visible, you may select

up to four players upon which to center the view. These players may be selected in any
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order. First, press an A/C button and use the keypad to enter the player number. Repeat
this procedure for all four players. Pressing the Reset button erases player numbers from
the Centroid auxiliary control panel windows. Once a player number has been seiected
and validated by the keypad, the background coler of the window containing the number
changes from green to lavender. When all selections have been completed, press the Accept
button to change the view in the upper left quadrant of the screen. The view will not change
until the Accept button has been pressed. After the Accept button has been pressed, the
background color of the player numbers changes from lavender back to green to let you
know that the view has been accepted.

The Centroid View’s position and orientation can be changed with the heading and
elevation sliders as long as the Centroid auxiliary control panel is visible. The horizontal
heading slider can be used to modify the view orientation. The default view heading is
000 or Nosth. A window immediately to the left of the heading slider indicates the current
view direction. Moving the slider to the right moves the heading from 000 to 359. A value
of 090 in the window indicates that the view is oriented to look to the East.

The Elev slider, which doubles as the Speed slider for the Detack subview, can be
used to change i..e Centroid View’s position from directly overhead to a position level
with the center coordinate of the selected centroid players. A window av the top of the

Elev slider indicates the current view elevation. The defaalt elevation is 090, or directly
overhead.
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After you have finished selecting the centroid players and have set the Centroid
View’s heading and elevation, press the Done button to hide the Centroid auxiliary control
panel, deactivate the heading and elevation sliders, and veactivate the Cockpit and Tether

buttons.

Cockpit View. The Cockpit View is attached to a position a fixed
distance from the origin of the player’s geometric model. This view allows you to see the
exercise from a pilot’s point of view. The generic head-up display (HUD) is visible in this

view.

To select the Cockpit View, press the Cockpit button on the left side of the master
control panel. Press the A/C button, located immediately above the Cockpit button, to

attach to a player.

Tether View.  The main Tether View is attached to a position directly
behind a player along the flight path vector. To select the Tether View, press the Tether
button on the left side of the master control panel. Press the A/C button to tether to a

player.

In the Anchor subview, the view position is determined by the cresshairs on the Plan
View Positioner window. The spaceball allows you to modify your view orientation. The
Anchor subview is useful for setting a view position on or near the ground at a target
location. This allows analysis of a flight's geometry, spacing, and timing as it attacks a
target. To select the Anchor subview, press the Anchor button, located below the Tether
button, whi'e the Tether View is activated.

Pressing the Detach button, located immediately below the Tether button, allows
you to “fiy” anywhere through the environment. Use the spaceball to coatrol your heading
and pitch and the Speed slider on the right side of the 3D View control area for your
airspeed. The airspeed is indicated in the window directly above the Speed slider and
may range from -90 knots to 3000 knots. An asterisk on the Plan View screen: shows your

location.
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E.2.2.7 Data Views. Press one of the four Data View buttons sn the right
side of the master control panel to bring up specific data about an individual player and
its identity. The selected Data View auxiliary control panel will be displayed in the lower

left hand quadrant of the screen. The None button hides any of the Data views.

Flight end Engineering Data Views. The Flight and Engineering
Data View auxiliary control panels are identical in the way they are operated. The only
difference between the two Data Views is the information contained in the bottom portion

of the display window. See Figure 85.

In order to review flight or engineering information about a player, press one of the
A/C buttons at the top of the panel. The default setting displays information about player
numbers 1-8. Pressing a single arrow button to the right or left of the scroll window at
the top of the panel increases/decreases the number in the scroll window by one. This
number corresponds to the player number in the leftmost column of the display. Selecting

the double arrow button increases/decreases this number by 8.
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The information in these Data Views is primarily intended for use with the Red
Flag high- and low-activity aircraft. Therefore, when scrolling, you will notice that the
allowable values are 1-40 and 100-200. Information about players outside of these ranges
require you to manually enter the player number by pressing one of the A/C buttons and

using the keypad.

Ezercise Lata View. The Exercise Data View provides the following
information about a player: identity, call sign, time of last position update, player type,
and mission role. This view only provides a “snapshot” of the information available at the
time the Exercise button is pressed and is not continuously updated. Press the Refresh
button at the top left of the Exercise Data View auxiliary control panel to update the
information. Data regarding any player for which PDUs have been received will be shown.
In order to remove information about inactive/deleted players, press the Remove Inactive
button on the upp::r right of the panel. The scroll bar, located to the left of the display
area, is visible only when the amount of information exceeds the panel’s display capacity.
Move the scroll bar up and down to reposition the information displayed. An illustration

of the Exercise Data View Panel is shown in Figure 86.

Weapons Summary Data View. The Weapons Summary Data View
auxiliary control panel shows a synopsis of all of the fire and detonation events occurring
during an exercise session. Unlike the Exercise Data View, the Weapons Summary View
is updated each time a new event is received. Information about these events includes:
time, type of event, weapon launcher and target, hit or miss and a reason for miss code,
bearing, range, altitude difference, and closing velocity at the time of the event. This data
can be saved to a disk file by pressing the Log button in the lower right corner of the
master control panel. The Erase button in the upper right corner of the panel removes all

weapons events from the display. See Figure 87 for a depiction of this control pane].

RFMDS identifies 90 reasons for a miss in one of its weapons simulations. Tables 22,

23, 24, and 25 contaiu an itemized list of these reasons and their respective codes.
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Figure 86. Exercise Data View Pane]

Figure 87. Weapons Summary Data View Panel
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[ Miss Value | Miss Description

0 Hit

1 Excessive lag heading

2 Excessive lead heading

3 Inside minimum range

4 Outside maximum range

5 Insufficient missile velocity

6 Gimbal limit exceeded

7 Seeker lost lock, excessive LOS rate

8 Exceeded missile maneuver capability

9 Interceptor radar not locked at launch

10 Insufficient closing velocity at time of launch

11 SEAM tone absent (training Sidewinder)

12 Sensor masked by terrain

13 Missile acquired the sun

14 Launcher radar broke lock (radar lock information
available). Launcher radar outside gimbal units
(radar lock information unavailable)

15 Replica sensor defeated (vice simulated sensor)

16 Intercept time less than safe arming

17 Inadequate missile settling time

18 Exceeded allowable miss distance (missile simulation).
Very large aiming error (gun simulation)

19 Outside of gun or platform operating range
(not now implemented)

20 Exceeded maximum flight time

21 Aiming lagged target (guns only)

22 Spare

23 SEAM angle or tone not available/incorrect

24 IR signal strength adversely affected seeker
performance at launch

25 No remaining ammunition (guns only)

26 Fossible clutter

27 Rate of change of c'osing velocity too large for
missile to track doppler

28 Wide doppler gate selected (radar missiles only)

29 Insufficient closing rate

[ 30 Dogfight mode improperly set B
Table 22. Weapon Simulations Miss Reasons (3:A-131-A-137)
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Tabie 23. Weapon Simulations Miss Reasons, Continued (3:A-131-A-137)

Miss Value

Miss Description

31
32
33

34

35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54-60

Probabiiistic miss

No IR target capability in front hemisphere
IR signal strength adversely affect seeker performance
during flight

High launcher angle of attack/sideslip adversely
affected missile performance

Incorrect or out-of-range input

Outside missile seeker range

Insufficient lead heading

Seeker field-of-view exceeded

Excessive angle off tail

Incorrect switch settings

Exceeded launcher G limit

Control burnt out

Radar status (threat radar turned off during
missile flight)

Minimum angle with horizon attained
Missile intercepted the ground

Gun pointing error

Missile model invalid

Sensor elevation gimbal lock

Roll gyro gimbal lock

Missile locked onto flare

Missile decoyed by chaff

Missile decoyed by expendable jammer
Missile decoyed by onboard jammer

Spare - L

———— e =
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[Miss Value | Miss Description

61 Sensor killed before weapon intercept

62 No target

63 Simulation not available

64 Missile failed to leave the rail; determined by

comparison the probability of a launch failure
for a particular missile and a random number

65 Out of AIM-7 missiles

66 Out of AIM-9 missiles

67 Target aircraft has already been scored dead
when fighter shoots

68 Target is scored dead after fighter shoots,
but before missile intercept

69 ATM-9 shot is attempted when system detects no
coolant has been present

70 AIM-7 missile is terminated when target ceases to

be illuminated because fighter is subsequently scored
dead or changes illumination mode (CW-PD)

n Sufficient tone present, but no target aircraft
detected
72 Insufficient I.R. tone present
73 Out of anti-radiation missiles
74 No weapon in inventory slot
75 Threat out of SAM’s
76 Launch aborted due to bad aircraft track
(i AIM-7 trigger received but aircraft not carrying AIM-7
78 AIM-9 trigger received but aircraft not carrying AIM-9
79 ARM trigger received but aircraft not carrying ARM
80 Phoenix trigger received but aircraft not carrying
Phoenix

Table 24. Weapon Simulations Miss Reasons, Continued (3:A-131-A-137)
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Miss Value | Miss De;cription ]

81 No Phoenix stores remaining

82 AIM-9 arm switch off

83 Out of weapon

84 No displayable event

85 Simulation terminated successfully

86 Out of laser guided bombs

87 Laser guided bomb trigger received but aircraft
not carrying laser guided bombs

88 No laser designated target or laser guided bomb
outside of laser cone

89 Invalid Phoenix missile mode at launch

90 AIM-54 missile is terminated when target ceases
to be illuminated because fighter is subsequently
scored dead or changes illumination mode

Table 25. Weapon Simulations Miss Reasons, Continued (3:A-131~A-137)

E.2.2.8 Pair Data. The Pair Data View auxiliary control panel is selected
by pressing the Pair button at the bottom of the Data View control area on the master
control panel. Activating this panel provides the following information about two players:
range, bearing, closing velocity, altitude difference, aspect angle, and antenna train angle.
Press the FTR and TGT buttons at the top of the display to pair two players and initiate
the display calculations. The Reset button is used to erase all players from the FTR/TGT
windows. Press the Pair button on the master control panel a second time to remove this

panel. An illustration of this panel is contained in Figure 88.

E.2.2.9 Event Logging. Weapons events may be recorded to a disk by
pressing the Log button, located in the lower right hand corner of the master control
panel. A File Select panel will appear in the center of the screen. Press the Enter button
on the computer keyboard to accept the default file name shown in the File Select panel
or use the mouse and keyboard to enter a new file name. A green light will appear next
to the Log button to indicate that this function is active. The panel disappears when the
Enter button on the keyboard or the Cancel button on the File Select panel is pressed. To

disable event logging, press the Log button a second time.
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Figure 88. Pair Data View Panel

E.2.210 Aircraft Att~butes.  The Aircraft Attribute auxiliary control pan-
els allow vou to change the length of the flight path history trails and the color assignment
of a particular player. To activate this panel, press the A/C Attributes button located

above the Plan View controls.

To change the length of the fiight path history trails, move the shder to the right or
left and press the Accept button. The length of the trails, measured in seconds, may range

from 0-60.

To change a player’s mission color, press the A /C button and enter the player number.
Once this number has been verified by the keypad, the Mission Codc¢ auxiliary control panel
will be displayed. Press the button for the desired mission roje. Pressing the Done button

removes both punels. Figure 89 shows these panels.

E.2.2.12 View Toggles.  Several of the display features and functions asso-
ciated with RDTy, can be turned on and off with the Toggle buttons located at the top

of the master contro] panel.

Press the Call Sigrs button to switch the player identification between the plaver

number and ar. alpha-numeric call sign.

Press the Weapons Data button to display the four mos: recent weapons events in

the lower right corner of the 3D or Expanded View.




Missiow
Code

Flight Path History

Secs
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Figure 89. Attribute Panels

Pressing the Low Activity button effectively hides tLe low-activity players from both
the Plan and 3D Views by removing the player identification number/call sign and down-
scaling the model size. (Any player number other than 1-36 is considered a low-activity
player for this toggle.) A second press of the button restores the display of low-activity
players.

Press the Dead Reckoning button to turn dead reckoning off and on. This does not

affect Readred’s dead reckoning computations.

Press the Geo Labels button to turn the geographic reference point labels on and off.

These include range boundaries, restricted areas, and single-letter ground reference points.

Pressing the Flight Paths button turns the flight path history trails on and off. This
does not affect flight path trails used to locate players selected for focus in the centroid

view.

E.2.2.12 Time Reset. The range time displayed in the lower left hand

corner of both the Plan and 3D Views is derived from information embedded in the Entity
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State PDUs. This time represents the most recent time received and is not a real-time
clock. The DIS standard requires that active entities broadcast Entity State PDUs at least
once every five seconds; therefore, the displayed range time may jump in increments of up
to five seconds. A hidden button on the clock face in the upper right hand corner of the
master control panel will allow you to reset the range time to 00:00:00:00. Press the center

of the clock face to activate the button.

E.2.2.183 Expanding Views. To expand views from the 1/4 screen mode to
1/2 screen mode, press one of the expand buttons in the upper right hand corner of the
master control panel, next to tke clock. These are toggle buttons. Press again to return to
1/4 screen mode. If you have pressed the expand button and are in the 1/2 screen mode,
you may also expand one level further to full screen mode by pressing the F3 function
key on the computer keyboard. This action places the master control panel underneath
the full screen graphics window. All other control panels remain visible. Pressing the F4
function key returns you to the 1/2 screen mode and places the master control panel on
top of the graphics window and any other auxiliary panels. In most cases, reselecting the

appropriate auxiliary panel button will make it visible again.

When you are in the full screen mode, pressing the F1 function key on the computer
keyboard will bring the master control panel into view without resizing the graphics win-
dow. Pressing the F2 function key will hide the master control panel. This is useful for

making momentary control inputs while allowing you to remain in the full screen mode.

E.2.2.14 Quit You can quit RDT by either using the Quit button on
the upper right hand side of the master control panel under the clock, or by pressing the

Escape button on the computer keyboard.

E.3 Performing Analysis Tasks

Directions for analyzing various types of data and performing analysis tasks not

previously described are included in this section.
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E.8.1 Bullseye Analysis. A bullseye point is a geographic reference point known
to the participants in an exercise. Airborne and ground controllers use this known reference
to point out enemy or unknown aircraft to friendly players. As an example, the call,
“Bandits, bullseye, 210, 20" indicates that enemy aircraft are located at a range of 20
nautical miles from the bullseye point on a magnetic bearing of 210 degrees. All friendly
aircraft may then calculate the position of the bandits relative to their position. The
bullseye point is displayed only in the Centroid View with player number ‘0’ selected.

The position of the bullseye player is set by using the plan view positioner and
referencing the latitude/longitude displays. Alternatively, the bullseye position may be
set by referencing the terrain texture map and setting the position over a known ground

reference,

Pair data is also available for the bullseye player. Just enter ‘0’ as the FTR on the
pair data form. Entering an active player into the TGT position on the pair data form

will then enable the pair calculations and provide the needed bearing and range from the
buliseye point to the TGT.

E.8.2 Date Reliability. The reliability of the RFMDS tracking systems can
be determined by referencing the Flight Data View auxiliary control panel and noting
three fields: filter, mode, and Itrace. The filter field indicates whether the position tracks
processed by the RFMDS data filters are ‘OK’ or ‘Unreliable.’ The mode field gives an
indication of the accuracy of the aircraft’s position by showing whether the position is
being calculated normally or is being predicted. The Jtrace field is another method used to
determine the accuracy of the data. Reference Table 26 for a description of the ir ¥*vidual

Itrace values.

E.8.8 Vertical Airspace Depiction. A vertical depiction of the airspace is useful
to determine the altitude separation between aircraft and to ensure that altitude block
assignments are not violated. Either the Centroid View or the Tether View may be used

to show a vertical depiction.
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Conditions of Filter Internal Operation

14
15
16
17

18
19
20
21

22

98

100
101
102
103
104
105

106
108

200

Filter output data all available

Filter is in multilateration mode

Ranging matrix not positive definite

Tracking aided by radar altimeter

Tracking on less than three ranges

Tracking on radar measurement and less than two ranges
Tracking on barometric measurement and less than
two ranges

Downlink data consistency failure

Filter output data consistency failure

All ranges and baro and radar altitude fail filter editing
Total filter blanking (downlink and raunging failure)
Data unreliable after initialization

Uplink data failure

All ranges fail gross checks and baro and radar
altitude invalid

Baro-aiding required but not available

TIS input buffer checksum error

Excessive uplink parity failure

Excessive roll rate during initialization or uplink
correction limited to what initialized pod will accept
Tracking aided by barometric measurement

No downlink air data

Aircraft off range with ITRACE of zero

Possible mirror image solution removed from DDS
until confirmed

Terrain map z used as a measurement to update filter z
Whole value uplink requested by AIS

Filter restart, critical cycle

Filter restart, excessive blanking

Filter restart, excessive uplink data failures

Filter restart, excessive uplink parity failures

Filter restart, excessive downlink data failures

Filter restart, excessive output data consistency
failures

Filter restart, excessive roll during initialization
Filter restart, excessive tracking on altitude
measurement only

New aircraft, begin initializa ion

Table 26. RFMDS Itrace Values (3:A-72)
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If the Centroid View is used, the view elevation slider can be set to the zero degree
position. This positions the centroid viewpoint level with the exact vertical midpoint of
the selected aircraft. Thus, some of the aircraft will appear above the viewpoint position
and some below. This may be sufficient for a small set of the aircraft immediately visible

in the centroid view volume.

If the Tether View is used, the Anchor subview must be selected. The anchor view-
point elevation is initially fixed at approximately 7400 ft, but may be modified by the
spaceball. To use the Anchor subview for a vertical position first set the location of the
anchor viewpoint by meving the Plan View positioner and then twist the spacebail to ro-
tate the view volume until the desired players are within the field of view. If the bullseye
has previously been selected as one of the centroid players, the bullseye position will need

to be reset if the anchor viewpoint position was modified.

E.8.4 Locating Aircraft.  The simplest means of locating an aircraft is to use the
Where is... button. First, enter the number of the aircraft to be located into the keypad
by pressing the A/C that is immediately above the Where is... button. Second, press the
Where is... button. The Plan View’s position is moved to a point directly over the desired

player’s prsition.

E.3.5 Trouble Shooting. As with many programs, anomalies may occur. This
subsection contains possible explanations for some of the anomalies you may notice during
a session with RDT. Table 27 may be used as a trouble shooting guide. It contains a list
of all of the known irregularities encountered to date.

Some of the problems listed in Table 27 are a direct result of the UDP/IP commu-
nications protocol at the heart of the DIS standard. Some PDUs are not recovered from
the network and thus, notification of fire or detonation events may not be received. No

definitive solution has yet been found to overcome this problem.
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Problem Explanation
Weapon update time Fire PDU not received None
shows 00:00:00:00
Non-Red Flag player None
Weapon never detonates | Detonation PDU not received | None
Weapon originates at Launching platform unknown | None
terrain origin
Aircraft orientation Most likely cause is bad Confirm RFMD¢ data
is incorrect RFMDS data. See Table 26 for | reliability with the
explanations of Itrace values Flight Data View
Flight path trail Player is decelerating None
appears ahead of the and the dead reckoning
aircraft calculations are predicting
a new position ahead of
the aircraft
Aircraft not visible but | Flat-earth terrain Restart with a
but data is available patch is used with round-earth terrain
round-earth data patch
Program terminates Performer v1.2 anomaly Consult SGI
abnormally with a
Performer fatal error:
uspsema(34)
Black polygons become | Performer v1.2 anomaly Consult SGI
visible in scene
Earth/Sky just above Performer anomaly Consult SGI
horizon blanks out This problem is related
to the position of the
far clipping plane

Table 27. Trouble Shooting Guide
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